scholarly journals Effects of atmospheric circulations on the interannual variation in PM<sub>2.5</sub> concentrations over the Beijing-Tianjin-Hebei region in 2013–2018

2020 ◽  
Author(s):  
Xiaoyan Wang ◽  
Renhe Zhang

Abstract. The Chinese government has made many efforts to mitigate fine particulate matter (PM2.5) pollution in recent years by taking strict measures on air pollutants reduction, which has generated the nationwide improvements in air quality since 2013. However, under the stringent air pollution controls, how PM2.5 concentration varies and how much the meteorological conditions contribute to the interannual variations in PM2.5 concentrations are still unclear, which is very important for the local government to assess the emission reduction of previous year and adjust mitigation strategies of next year. The effects of atmospheric circulation on the interannual variation in wintertime PM2.5 concentrations over the Beijing-Tianjin-Hebei (BTH) region in the period of 2013–2018 are evaluated in this study. Generally, the transport of clean and dry air masses and unstable boundary layer working with the effective near-surface horizontal divergence or pumping action at the top of the boundary layer benefit for the horizontal or vertical diffusion of surface air pollutants. Instead, the co-occurrence of a stable boundary layer, frequent air stagnation, positive water vapor advection and deep near-surface horizontal convergence exacerbate the air pollution. Favorable circulation conditions lasting for 2~4 days are beneficial for the diffusion of air pollutants, and 3~7 days of unfavorable circulation events exacerbate the accumulation of air pollutants. The occurrence frequency of favorable circulation events is consistent with the interannual variation in seasonal mean PM2.5 concentrations. There is better diffusion ability in the winters of 2014 and 2017 than in other years. A 76.5 % of the observed decrease in PM2.5 concentrations in 2017 over the BTH region could be attributed to the improvement in atmospheric diffusion conditions. It is essential to exclude the contribution of meteorological conditions to the variation in interannual air pollutants when making a quantitative evaluation of emission reduction measurements.

2020 ◽  
Vol 20 (13) ◽  
pp. 7667-7682 ◽  
Author(s):  
Xiaoyan Wang ◽  
Renhe Zhang

Abstract. The Chinese government has made many efforts to mitigate fine particulate matter pollution in recent years by taking strict measures on air pollutant reduction, which has generated the nationwide improvements in air quality since 2013. However, under the stringent air pollution controls, how the wintertime PM2.5 concentration (i.e., the mass concentration of atmospheric particles with diameters less than 2.5 µm) varies and how much the meteorological conditions contribute to the interannual variations in PM2.5 concentrations are still unclear, and these very important for the local government to assess the emission reduction of the previous year and adjust mitigation strategies for the next year. The effects of atmospheric circulation on the interannual variation in wintertime PM2.5 concentrations over the Beijing–Tianjin–Hebei (BTH) region in the period of 2013–2018 are evaluated in this study. Generally, the transport of clean and dry air masses and an unstable boundary layer in combination with the effective near-surface horizontal divergence or pumping action at the top of the boundary layer benefits the horizontal or vertical diffusion of surface air pollutants. Instead, the co-occurrence of a stable boundary layer, frequent air stagnation, positive water vapor advection and deep near-surface horizontal convergence exacerbate the wintertime air pollution. Favorable circulation conditions lasting for 2–4 d are beneficial for the diffusion of air pollutants, and 3–7 d of unfavorable circulation events exacerbates the accumulation of air pollutants. The occurrence frequency of favorable circulation events is consistent with the interannual variation in seasonal mean PM2.5 concentrations. There is better diffusion ability in the winters of 2014 and 2017 than in other years. A 59.9 % observed decrease in PM2.5 concentrations in 2017 over the BTH region could be attributed to the improvement in atmospheric diffusion conditions. It is essential to exclude the contribution of meteorological conditions to the variation in interannual air pollutants when making a quantitative evaluation of emission reduction measurements.


2020 ◽  
Author(s):  
Yongqing Bai ◽  
Tianliang Zhao ◽  
Yue Zhou ◽  
Jie Xiong ◽  
Weiyang Hu ◽  
...  

Abstract. Anthropogenic emission, meteorological conditions, and regional transport are the three major factors influencing heavy air pollution in China. The Hunan and Hubei provinces in the middle Yangtze River region border China's main air pollution areas, serving as the hub of regional transport of air pollutants. The meteorological formation mechanism of regional transport of air pollutants on heavy air pollution in the Hunan and Hubei provinces still remain urgent to be addressed in depth. In this study, multivariate empirical orthogonal function (MV-EOF) analysis was performed to objectively select eight typical heavy pollution events in the two provinces that occured in January 2015–2019. Based on the regional surface environment, meteorological network data, atmospheric sounding data, ERA-interim reanalysis data, and a numerical simulation experiment, this study investigated the pattern of regional transport of air pollutants in the two provinces and its mechanism of regional meteorological conditions. The results showed that transporting air pollutants mainly passed through two transport pathways, namely the Nanxiang Basin-Yunmeng Plain pathway and the Dabie Mountain's Hilly Area-Yunmeng Plain pathway, existing anomalous near-surface northerly winds in the two provinces and their upstream area accompanied by southward penetration of a shallow cold layer, all of which jointly provide a dynamic condition for regional air pollutant transport. The weak cold-air mass degenerated as it passed through the Hunan–Hubei Plain, causing warm air to accumulate in the near-surface layer of the downstream area, where winds slowed down and converged, buffering the air pollutant transport and resulting in pollutants accumulation; the near-surface atmosphere of the Hunan and Hubei provinces was a non-stagnant condition (dry intrusion of cold air, anomalous northerly winds, and positive anomalies of boundary-layer height), which is conducive to the horizontal transport of air pollutants. However, the mid-high layers, characterized by temperature inversion and the presence of a warm lid, had a stable stratification, inhibiting the diffusion of air pollutants to the upper layers; there is an obvious longitudinal vertical circulation above the Hunan–Hubei Plain, which results in the sinking and accumulation of air pollutants, thereby promoting rapid accumulation of air pollutants in the Hunan and Hubei provinces. In addition, extended empirical orthogonal function (EEOF) analysis was performed, revealing a quasi-4-d periodic oscillation pattern of air pollutants transport in the Hunan and Hubei provinces, which provides a reference for early prediction of its regional transport. The findings are of practical value in broadening the scientific understanding of the differences in the formation mechanism of heavy atmospheric pollution between the various regions of China and promoting environmental and ecological protection of the middle Yangtze Basin.


2020 ◽  
Vol 20 (12) ◽  
pp. 7217-7230 ◽  
Author(s):  
Chao Yu ◽  
Tianliang Zhao ◽  
Yongqing Bai ◽  
Lei Zhang ◽  
Shaofei Kong ◽  
...  

Abstract. The regional transport of air pollutants, controlled by emission sources and meteorological factors, results in a complex source–receptor relationship of air pollution change. Wuhan, a metropolis in the Yangtze River middle basin (YRMB) of central China, experienced heavy air pollution characterized by hourly PM2.5 concentrations reaching 471.1 µg m−3 in January 2016. To investigate the regional transport of PM2.5 over central eastern China (CEC) and the meteorological impact on wintertime air pollution in the YRMB area, observed meteorological and other relevant environmental data from January 2016 were analyzed. Our analysis presented noteworthy cases of heavy PM2.5 pollution in the YRMB area with unique “non-stagnant” meteorological conditions of strong northerly winds, no temperature inversion, and additional unstable structures in the atmospheric boundary layer. This unique set of conditions differed from the stagnant meteorological conditions characterized by near-surface weak winds, air temperature inversion, and stable structure in the boundary layer that are typically observed in heavy air pollution over most regions in China. The regional transport of PM2.5 over CEC aggravated PM2.5 levels, thus creating heavy air pollution in the YRMB area. This demonstrates a source–receptor relationship between the originating air pollution regions in CEC and the receiving YRMB region. Furthermore, a backward trajectory simulation using a Flexible Particle dispersion (FLEXPART) Weather Research and Forecasting (WRF) model to integrate the air pollutant emission inventory over China was used to explore the patterns of regional transport of PM2.5 governed by the strong northerly winds in the cold air activity of the East Asian winter monsoon season. It was estimated that the regional transport of PM2.5 from non-local air pollutant emissions contributes more than 65 % of the PM2.5 concentrations to the heavy air pollution in the YRMB region during the study period, revealing the importance of the regional transport of air pollutants over China as a causative factor of heavy air pollution over the YRMB area.


2019 ◽  
Author(s):  
Chao Yu ◽  
Tianliang Zhao ◽  
Yongqing Bai ◽  
Lei Zhang ◽  
Xingna Yu ◽  
...  

Abstract. Regional transport of air pollutants controlled by both emission sources and meteorological factors results in a complex source-receptor relationship of air pollution change. Wuhan, a metropolis in the Yangtze River Middle Basin (YRMB) of central China experienced heavy air pollution characterized by excessive PM2.5 concentrations reaching 471.1 μg m−3 in January 2016. In order to investigate the regional transport of PM2.5 over China and the meteorological impact on wintertime air pollution in the YRMB area, observational meteorological and other relevant environmental data from January 2016 were analyzed. Our analysis presented the noteworthy cases of heavy PM2.5 pollution in the YRMB area with the unique “non-stagnant” meteorological conditions of strong northerly winds, no temperature inversion and additional unstable structures in the atmospheric boundary layer. This unique set of conditions differed from the stagnant meteorological conditions characterized by near-surface weak winds, air temperature inversion, and stable structure in the boundary layer observed in heavy air pollution over most regions in China. The regional transport of PM2.5 over central-eastern China aggravated PM2.5 levels present in the YRMB area, thus demonstrating the source-receptor relationship between the originating air pollution regions in central-eastern China and the receiving YRMB regions. Furthermore, a backward trajectory simulation using FLEXPART-WRF to integrate the air pollutant emission inventory over China was used to explore the patterns of regional transport of PM2.5 governed by the strong northerly winds in the cold air activity of the East Asian winter monsoon over central-eastern China, which contributes markedly to the heavy PM2.5 pollution in the YRMB area. It was estimated that the regional transport of PM2.5 of non-local air pollutant emissions could contribute more than 65 % of the PM2.5 concentrations to the heavy air pollution in the YRMB region during the study period, revealing the importance of the regional transport of air pollutants over central-eastern China in the formation of heavy air pollution over the YRMB region.


2017 ◽  
Author(s):  
Zilin Wang ◽  
Xin Huang ◽  
Aijun Ding

Abstract. Black carbon (BC) has been identified to play a critical role in aerosol-planet boundary layer (PBL) interaction and further deterioration of near-surface air pollution in megacities, which has been named as its dome effect. However, the impacts of key factors that influence this effect, such as the vertical distribution and aging processes of BC, and also the underlying land surface, have not been quantitatively explored yet. Here, based on available in-situ measurements of meteorology and atmospheric aerosols together with the meteorology-chemistry online coupled model, WRF-Chem, we conduct a set of parallel simulations to quantify the roles of these factors in influencing the BC's dome effect and surface haze pollution, and discuss the main implications of the results to air pollution mitigation in China. We found that the impact of BC on PBL is very sensitive to the altitude of aerosol layer. The upper level BC, especially those near the capping inversion, is more essential in suppressing the PBL height and weakening the turbulence mixing. The dome effect of BC tends to be significantly intensified as BC aerosol mixed with scattering aerosols during winter haze events, resulting in a decrease of PBL height by more than 25 %. In addition, the dome effect is more substantial (up to 15 %) in rural areas than that in the urban areas with the same BC loading, indicating an unexpected regional impact of such kind of effect to air quality in countryside. This study suggests that China's regional air pollution would greatly benefit from BC emission reductions, especially those from the elevated sources from the chimneys and also the domestic combustions in rural areas, through weakening the aerosol-boundary layer interactions that triggered by BC.


2016 ◽  
Vol 113 (28) ◽  
pp. 7756-7761 ◽  
Author(s):  
Jun Liu ◽  
Denise L. Mauzerall ◽  
Qi Chen ◽  
Qiang Zhang ◽  
Yu Song ◽  
...  

As part of the 12th Five-Year Plan, the Chinese government has developed air pollution prevention and control plans for key regions with a focus on the power, transport, and industrial sectors. Here, we investigate the contribution of residential emissions to regional air pollution in highly polluted eastern China during the heating season, and find that dramatic improvements in air quality would also result from reduction in residential emissions. We use the Weather Research and Forecasting model coupled with Chemistry to evaluate potential residential emission controls in Beijing and in the Beijing, Tianjin, and Hebei (BTH) region. In January and February 2010, relative to the base case, eliminating residential emissions in Beijing reduced daily average surface PM2.5 (particulate mater with aerodynamic diameter equal or smaller than 2.5 micrometer) concentrations by 14 ± 7 μg⋅m−3 (22 ± 6% of a baseline concentration of 67 ± 41 μg⋅m−3; mean ± SD). Eliminating residential emissions in the BTH region reduced concentrations by 28 ± 19 μg⋅m−3 (40 ± 9% of 67 ± 41 μg⋅m−3), 44 ± 27 μg⋅m−3 (43 ± 10% of 99 ± 54 μg⋅m−3), and 25 ± 14 μg⋅m−3 (35 ± 8% of 70 ± 35 μg⋅m−3) in Beijing, Tianjin, and Hebei provinces, respectively. Annually, elimination of residential sources in the BTH region reduced emissions of primary PM2.5 by 32%, compared with 5%, 6%, and 58% achieved by eliminating emissions from the transportation, power, and industry sectors, respectively. We also find air quality in Beijing would benefit substantially from reductions in residential emissions from regional controls in Tianjin and Hebei, indicating the value of policies at the regional level.


2020 ◽  
Author(s):  
Qianqian Huang ◽  
Xuhui Cai ◽  
Jian Wang ◽  
Yu Song ◽  
Tong Zhu

&lt;p&gt;The Air Stagnation Index (ASI) is a vital meteorological measure of the atmosphere&amp;#8217;s ability to dilute air pollutants. The original metric adopted by the US National Climatic Data Center (NCDC) is found to be not very suitable for China, because the decoupling between the upper and lower atmospheric layers results in a weak link between the near-surface air pollution and upper-air wind speed. Therefore, a new threshold for the ASI&amp;#8211;Boundary-layer air Stagnation Index (BSI) is proposed, consisting of daily maximal ventilation in the atmospheric boundary layer, precipitation, and real latent instability. In the present study, the climatological features of the BSI are investigated. It shows that the spatial distribution of the BSI is similar to the ASI; that is, annual mean stagnations occur most often in the northwestern and southwestern basins, i.e., the Xinjiang and Sichuan basins (more than 180 days), and least over plateaus, i.e., the Qinghai&amp;#8211;Tibet and Yunnan plateaus (less than 40 days). However, the seasonal cycle of the BSI is changed. Stagnation days under the new metric are observed to be maximal in winter and minimal in summer, which is positively correlated with the air pollution index (API) during 2000&amp;#8211;2012. The correlations between the BSI and the concentration of fine particulate matter (PM2.5) during January 2013 and November to December in 2015&amp;#8211;2017 of Beijing are also investigated. It shows that the BSI matches the day-by-day variation of PM2.5 concentration very well and is able to catch the haze episodes.&lt;/p&gt;


2020 ◽  
Vol 20 (8) ◽  
pp. 4575-4592 ◽  
Author(s):  
Dandan Zhao ◽  
Guangjing Liu ◽  
Jinyuan Xin ◽  
Jiannong Quan ◽  
Yuesi Wang ◽  
...  

Abstract. Under a high atmospheric oxidization capacity, the synergistic effect of the physicochemical processes in the atmospheric boundary layer (ABL) caused summer haze pollution in Beijing. The southern and southwestern areas, generally 60–300 km away from Beijing, were seriously polluted in contrast to Beijing, which remained clean. Southerly winds moving faster than 20–30 km h−1 since the early morning primarily caused haze pollution initiation. The PM2.5 (particulate matter with a dynamic equivalent diameter smaller than 2.5 µm) level increased to 75 µg m−3 over several hours during the daytime, which was simultaneously affected by the ABL structure. Additionally, the O3 concentration was quite high during the daytime (250 µg m−3), corresponding to a high atmospheric oxidation capacity. Much sulfate and nitrate were produced through active atmospheric chemical processes, with sulfur oxidation ratios (SORs) up to ∼0.76 and nitrogen oxidation ratios (NORs) increasing from 0.09 to 0.26, which further facilitated particulate matter (PM) level enhancement. However, the increase in sulfate was mainly linked to southerly transport. At midnight, the PM2.5 concentration sharply increased from 75 to 150 µg m−3 over 4 h and remained at its highest level until the next morning. Under an extremely stable ABL structure, secondary aerosol formation dominated by nitrate was quite intense, driving the haze pollution outbreak. The PM levels in the southern and southeastern areas of Beijing were significantly lower than those in Beijing at this time, even below air quality standards; thus, the contribution of pollution transport had almost disappeared. With the formation of a nocturnal stable boundary layer (NSBL) at an altitude ranging from 0–0.3 km, the extremely low turbulence kinetic energy (TKE) ranging from 0 to 0.05 m2 s−2 inhibited the spread of particles and moisture, ultimately resulting in elevated near-surface PM2.5 and relative humidity (∼90 %) levels. Due to the very high humidity and ambient oxidization capacity, NOR rapidly increased from 0.26 to 0.60, and heterogeneous hydrolysis reactions at the moist particle surface were very notable. The nitrate concentration steeply increased from 11.6 to 57.8 µg m−3, while the sulfate and organics concentrations slightly increased by 6.1 and 3.1 µg m−3, respectively. With clean and strong winds passing through Beijing, the stable ABL dissipated with the potential temperature gradient becoming negative and the ABL height (ABLH) increasing to ∼2.5 km. The high turbulence activity with a TKE ranging from 3 to 5 m2 s−2 notably promoted pollution diffusion. The self-cleaning capacity of the atmosphere is commonly responsible for air pollution dispersion. However, reducing the atmospheric oxidization capacity, through strengthening collaborative control of nitrogen oxide (NOx) and volatile organic compounds (VOCs), as well as continuously deepening regional joint air pollution control, is urgent.


2018 ◽  
Vol 10 (11) ◽  
pp. 4329 ◽  
Author(s):  
Xiangyu Teng ◽  
Liang Lu ◽  
Yung-ho Chiu

China has one of the most serious air quality conditions in the world, with the main energy consumption and air pollution emissions coming from its industrial sector. Since 2010, the Chinese government has strengthened the governance requirements for industrial sector emissions. This study uses emission treatment as a new input on the basis of past literature, and employs the dynamic SBM model to evaluate the energy and emission-reduction efficiencies of the country’s industrial sector from 2011 to 2015. The study finds that the improvement in industrial sector efficiency is not only due to the optimization of the energy consumption structure and reduction of energy intensity, but also from investing inemission treatment methods that help cut emissions as an undesirable output. The end result is a positive effect on the improvement and sustainability of energy and emission-reduction efficiencies.


2017 ◽  
Vol 17 (22) ◽  
pp. 13921-13940 ◽  
Author(s):  
Pengfei Liang ◽  
Tong Zhu ◽  
Yanhua Fang ◽  
Yingruo Li ◽  
Yiqun Han ◽  
...  

Abstract. To control severe air pollution in China, comprehensive pollution control strategies have been implemented throughout the country in recent years. To evaluate the effectiveness of these strategies, the influence of meteorological conditions on levels of air pollution needs to be determined. Using the intensive air pollution control strategies implemented during the Asia-Pacific Economic Cooperation Forum in 2014 (APEC 2014) and the 2015 China Victory Day Parade (Victory Parade 2015) as examples, we estimated the role of meteorological conditions and pollution control strategies in reducing air pollution levels in Beijing. Atmospheric particulate matter of aerodynamic diameter  ≤ 2.5 µm (PM2.5) samples were collected and gaseous pollutants (SO2, NO, NOx, and O3) were measured online at a site in Peking University (PKU). To determine the influence of meteorological conditions on the levels of air pollution, we first compared the air pollutant concentrations during days with stable meteorological conditions. However, there were few days with stable meteorological conditions during the Victory Parade. As such, we were unable to estimate the level of emission reduction efforts during this period. Finally, a generalized linear regression model (GLM) based only on meteorological parameters was built to predict air pollutant concentrations, which could explain more than 70 % of the variation in air pollutant concentration levels, after incorporating the nonlinear relationships between certain meteorological parameters and the concentrations of air pollutants. Evaluation of the GLM performance revealed that the GLM, even based only on meteorological parameters, could be satisfactory to estimate the contribution of meteorological conditions in reducing air pollution and, hence, the contribution of control strategies in reducing air pollution. Using the GLM, we found that the meteorological conditions and pollution control strategies contributed 30 and 28 % to the reduction of the PM2.5 concentration during APEC and 38 and 25 % during the Victory Parade, respectively, based on the assumption that the concentrations of air pollutants are only determined by meteorological conditions and emission intensities. We also estimated the contribution of meteorological conditions and control strategies in reducing the concentrations of gaseous pollutants and PM2.5 components with the GLMs, revealing the effective control of anthropogenic emissions.


Sign in / Sign up

Export Citation Format

Share Document