scholarly journals Photodegradation of atmospheric chromophores: changes in oxidation state and photochemical reactivity

2021 ◽  
Vol 21 (15) ◽  
pp. 11581-11591
Author(s):  
Zhen Mu ◽  
Qingcai Chen ◽  
Lixin Zhang ◽  
Dongjie Guan ◽  
Hao Li

Abstract. Atmospheric chromophoric organic matter (COM) plays a fundamental role in photochemistry and aerosol aging. However, the effects of photodegradation on chemical components and photochemical reactivity of COM remain unresolved. Here, we report the potential effects of photodegradation on carbon contents, optical properties, fluorophore components and photochemical reactivity in aerosol. After 7 d of photodegradation, fluorescent intensity and the absorption coefficient of COM decrease by 71.4 % and 32.0 %, respectively. Photodegradation makes a difference to the chemical component of chromophore and the degree of aerosol aging. Low-oxidation humic-like substance (HULIS) is converted into high-oxidation HULIS due to photooxidation. Photodegradation also changes the photochemical reactivity. The generation of triplet-state COM (3COM*) decreases slightly in ambient particulate matter (ambient PM) but increases in primary organic aerosol (POA) following photodegradation. The results highlight that the opposite effect of photodegradation on photochemical reactivity in POA and ambient PM. However, the generation of singlet-oxygen (1O2) decreases obviously in POA and ambient PM, which could be attributed to photodegradation of precursors of 1O2. The combination of optical property, chemical component and reactive oxygen species has an important impact on the air quality. The new insights on COM photodegradation in aerosol reinforce the importance of studying dissolved organic matter (DOM) related with the photochemistry and aerosol aging.

2020 ◽  
Author(s):  
Zhen Mu ◽  
Qingcai Chen ◽  
Lixin Zhang ◽  
Dongjie Guan ◽  
Hao Li

Abstract. Atmospheric chromophoric organic matters (COM) can participate in photochemical reactions because of the photosensitiveness, thus COM have a potential contribution to aerosols aging. The photochemical mechanism of atmospheric COM and the effect of photo-degradation on its photochemical reactivity are not fully understood. To address this knowledge gap, the characteristics of COM photo-degradation and the potential effects of COM photolysis on the photochemical reactivity are illustrated. COM are identified by excitation-emission matrices combined with parallel factor analysis. We confirm that both water-soluble and water-insoluble COM are photo-bleached, and an average 70 % of fluorescence intensities are lost after 7 days of light exposure. Furtherly, it is found that there is a transformation process of low oxidation to high oxidation HULIS. We propose that the high oxidation HULIS could be used to trace the aging degree of aerosols. In terms of photochemical reactivity, compared with before photolysis, the triplet state COM (3COM*) decrease slightly in ambient particle matter (ambient PM) samples and increase in primary organic aerosol (POA). However, the COM induce fewer singlet oxygen after photolysis. The photolysis and conversion of COM are the major cause of the change of photochemical activity. The result also enunciate that the photochemical reaction mechanisms and aerosol aging processes are relatively different in various aerosols. In conclusion, we demonstrated that the photo-degradation of COM not only change the chemical compositions, but also change the roles of the COM in the aerosol aging process.


Author(s):  
Ke Rui ◽  
Wang Hongxing ◽  
Tan Yunzhi ◽  
Wang Lehua

Based on orthogonal experimental design, the key solidification controlling technology of Solidified/Stabilized (S/S) sludge with high total organic content (TOC) by cement, lime and metakaolin was explored by macroscopic tests, chemical components measurements and microscopic analysis. The macroscopic tests show that, the permeability coefficient is mainly affected by initial water content and lime content, and the unconfined compression strength is mainly affected by cement content and lime content. The chemical components measurements show that, the solidification effect of S/S sludge with high TOC is controlled by organic matter consumption, and organic matter consumption is determined by the alkaline environment from the cement and lime hydration reactions, which is mainly affect by the initial water content and lime-metakaolin content ratio. The microscopic analysis results show that, lime consumes parts of organic matter while excess lime produces weak Ca(OH)2 crystal fluffy sheet structure, matakaolin produces pozzolanic reactions with cement and lime instead of soil particles, and consumes the weak Ca(OH)2 crystal fluffy sheet structure produced by superfluous lime. The research has confirmed key controlling points of S/S sludge in case of high TOC, which will provide theoretical guidance and technical support for S/S sludge promotion with high TOC.


2021 ◽  
Vol 21 (1) ◽  
pp. 357-392
Author(s):  
Igor B. Konovalov ◽  
Nikolai A. Golovushkin ◽  
Matthias Beekmann ◽  
Meinrat O. Andreae

Abstract. Long-range transport of biomass burning (BB) aerosol from regions affected by wildfires is known to have a significant impact on the radiative balance and air quality in receptor regions. However, the changes that occur in the optical properties of BB aerosol during long-range transport events are insufficiently understood, limiting the adequacy of representations of the aerosol processes in chemistry transport and climate models. Here we introduce a framework to infer and interpret changes in the optical properties of BB aerosol from satellite observations of multiple BB plumes. Our framework includes (1) a procedure for analysis of available satellite retrievals of the absorption and extinction aerosol optical depths (AAOD and AOD) and single-scattering albedo (SSA) as a function of the BB aerosol photochemical age and (2) a representation of the AAOD and AOD evolution with a chemistry transport model (CTM) involving a simplified volatility basis set (VBS) scheme with a few adjustable parameters. We apply this framework to analyze a large-scale outflow of BB smoke plumes from Siberia toward Europe that occurred in July 2016. We use AAOD and SSA data derived from OMI (Ozone Monitoring Instrument) satellite measurements in the near-UV range along with 550 nm AOD and carbon monoxide (CO) columns retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer) and IASI (Infrared Atmospheric Sounding Interferometer) satellite observations, respectively, to infer changes in the optical properties of Siberian BB aerosol due to its atmospheric aging and to get insights into the processes underlying these changes. Using the satellite data in combination with simulated data from the CHIMERE CTM, we evaluate the enhancement ratios (EnRs) that allow isolating AAOD and AOD changes due to oxidation and gas–particle partitioning processes from those due to other processes, including transport, deposition, and wet scavenging. The behavior of EnRs for AAOD and AOD is then characterized using nonlinear trend analysis. It is found that the EnR for AOD strongly increases (by about a factor of 2) during the first 20–30 h of the analyzed evolution period, whereas the EnR for AAOD does not exhibit a statistically significant increase during this period. The increase in AOD is accompanied by a statistically significant enhancement of SSA. Further BB aerosol aging (up to several days) is associated with a strong decrease in EnRs for both AAOD and AOD. Our VBS simulations constrained by the observations are found to be more consistent with satellite observations of strongly aged BB plumes than “tracer” simulations in which atmospheric transformations of BB organic aerosol were disregarded. The simulation results indicate that the upward trends in EnR for AOD and in SSA are mainly due to atmospheric processing of secondary organic aerosol (SOA), leading to an increase in the mass scattering efficiency of BB aerosol. Evaporation and chemical fragmentation of the SOA species, part of which is assumed to be absorptive (to contain brown carbon), are identified as likely reasons for the subsequent decrease in the EnR for both AAOD and AOD. Hence, our analysis reveals that the long-range transport of smoke plumes from Siberian fires is associated with major changes in BB aerosol optical properties and chemical composition. Overall, this study demonstrates the feasibility of using available satellite observations for evaluating and improving representations in atmospheric models of the BB aerosol aging processes in different regions of the world at much larger temporal scales than those typically addressed in aerosol chamber experiments.


2019 ◽  
Vol 19 (6) ◽  
pp. 3645-3672 ◽  
Author(s):  
Mikko Äijälä ◽  
Kaspar R. Daellenbach ◽  
Francesco Canonaco ◽  
Liine Heikkinen ◽  
Heikki Junninen ◽  
...  

Abstract. The interactions between organic and inorganic aerosol chemical components are integral to understanding and modelling climate and health-relevant aerosol physicochemical properties, such as volatility, hygroscopicity, light scattering and toxicity. This study presents a synthesis analysis for eight data sets, of non-refractory aerosol composition, measured at a boreal forest site. The measurements, performed with an aerosol mass spectrometer, cover in total around 9 months over the course of 3 years. In our statistical analysis, we use the complete organic and inorganic unit-resolution mass spectra, as opposed to the more common approach of only including the organic fraction. The analysis is based on iterative, combined use of (1) data reduction, (2) classification and (3) scaling tools, producing a data-driven chemical mass balance type of model capable of describing site-specific aerosol composition. The receptor model we constructed was able to explain 83±8 % of variation in data, which increased to 96±3 % when signals from low signal-to-noise variables were not considered. The resulting interpretation of an extensive set of aerosol mass spectrometric data infers seven distinct aerosol chemical components for a rural boreal forest site: ammonium sulfate (35±7 % of mass), low and semi-volatile oxidised organic aerosols (27±8 % and 12±7 %), biomass burning organic aerosol (11±7 %), a nitrate-containing organic aerosol type (7±2 %), ammonium nitrate (5±2 %), and hydrocarbon-like organic aerosol (3±1 %). Some of the additionally observed, rare outlier aerosol types likely emerge due to surface ionisation effects and likely represent amine compounds from an unknown source and alkaline metals from emissions of a nearby district heating plant. Compared to traditional, ion-balance-based inorganics apportionment schemes for aerosol mass spectrometer data, our statistics-based method provides an improved, more robust approach, yielding readily useful information for the modelling of submicron atmospheric aerosols physical and chemical properties. The results also shed light on the division between organic and inorganic aerosol types and dynamics of salt formation in aerosol. Equally importantly, the combined methodology exemplifies an iterative analysis, using consequent analysis steps by a combination of statistical methods. Such an approach offers new ways to home in on physicochemically sensible solutions with minimal need for a priori information or analyst interference. We therefore suggest that similar statistics-based approaches offer significant potential for un- or semi-supervised machine-learning applications in future analyses of aerosol mass spectrometric data.


2019 ◽  
Author(s):  
Arineh Cholakian ◽  
Matthias Beekmann ◽  
Isabelle Coll ◽  
Giancarlo Ciarelli ◽  
Augustin Colette

Abstract. Organic aerosol can have important impacts on air quality and human health because of its chemical composition and its large contribution to the atmospheric fine aerosols. Simulation of this aerosol is difficult since there are many unknowns in the nature, mechanism and processes involved in the formation of these aerosols. These uncertainties become even more important in the context of a changing climate, because different mechanisms, and their representation in atmospheric models, imply different sensitivities to changes in climate variables. In this work, the effects caused by using different schemes to simulate OA are explored. Three schemes are used in this work: a molecular scheme, a standard volatility basis set (VBS) scheme with anthropogenic aging and a modified VBS scheme containing functionalization, fragmentation and formation of non-volatile SOA formation for all semi-volatile organic compounds (SVOCs). 5 years of historic and 5 years of future simulations were performed using the RCP8.5 climatic scenario. The years were chosen in a way to maximize the differences between future and historic simulations. The comparisons show that for the European area, the modified VBS scheme shows the highest relative change between future and historic simulations, while the molecular scheme shows the lowest (a factor of two lower). These changes are maximized over the summer period for biogenic SOA (BSOA) because the higher temperatures increase terpene and isoprene emissions, the major precursors of BSOA. This increase is partially off-set by a temperature induced shift of SVOCs to gas phase. This shift is indeed scheme dependent, and it is shown that it is the least pronounced for the modified VBS scheme including a full suite of aerosol aging processes, comprising also formation of non-volatile aerosol. For the Mediterranean Sea, without BVOC emissions, the OA changes are less pronounced and, at least on an annual average, more similar between different schemes. Absolute concentrations between different schemes are also different. Our results warrant further developments in organic aerosol schemes used for air quality modelling to reduce their uncertainty, including sensitivity to climate variables (temperature).


2019 ◽  
Vol 53 (20) ◽  
pp. 11725-11734 ◽  
Author(s):  
Stephanie M. Berg ◽  
Quinn T. Whiting ◽  
Joseph A. Herrli ◽  
Ronan Winkels ◽  
Kristine H. Wammer ◽  
...  

2019 ◽  
Vol 10 (6) ◽  
pp. 1736-1744 ◽  
Author(s):  
Zhuangzhuang Feng ◽  
Mingqiang Huang ◽  
Shunyou Cai ◽  
Xuezhe Xu ◽  
Zhenli Yang ◽  
...  

1974 ◽  
Vol 22 (4) ◽  
pp. 681 ◽  
Author(s):  
BB Lamont ◽  
AJ Mccomb

Proteoid roots are not formed in sterile soil under conditions which would otherwise allow their production. This is attributed to the absence of soil microorganisms rather than to an alteration of chemical components by autoclaving. Water extracts from proteoid roots or their associated soil did not enhance the formation of proteoid roots. High microbial numbers in the surface soil horizons are considered largely responsible for the abundance of proteoid roots in these high organic matter regions. Results of experiments indicate that the formation of proteoid roots is stimulated by soil microorganisms which themselves do not invade the parent root, though the relevant organisms have yet to be identified.


2013 ◽  
Vol 448-453 ◽  
pp. 317-321 ◽  
Author(s):  
Jing Wen Cao ◽  
Shao Wei Liao ◽  
Chung Yi Chung ◽  
Hwa Sheng Gau ◽  
Chun Yen Chiu ◽  
...  

In this research, the UV absorbance values of wavelength at 210 and 254 nm, excitation emission fluorescent matrix were measured for source water and treated water in CCL (Cheng Ching Lake) water treatment plant during five months. The whole data produced from EEFM was analyzed by PARAFAC operated in MATLAB software. The variation of molecular weight for organic matter was measured by HPLC (high performance liquid chromatography) with UV and fluorescent detectors. Observed from the variation of UV210/UV254, high value in treated water compared with source water was found. More molecular weight less than 5 k Da was formed in the treated water with relative to source water. Also, both major components in source water were located at wavelengths of excitation/emission of 250/410 nm and 230/330 nm and those in treated water were 240/410 nm and 220/290 nm. Also, the fluorescent intensity, long excitation wavelength was higher than short excitation wavelength in source water. This phenomena was opposite with treated water.


Sign in / Sign up

Export Citation Format

Share Document