scholarly journals Optical and hygroscopic properties of black carbon influenced by particle microphysics at the top of the anthropogenically polluted boundary layer

2021 ◽  
Vol 21 (2) ◽  
pp. 681-694
Author(s):  
Shuo Ding ◽  
Dantong Liu ◽  
Kang Hu ◽  
Delong Zhao ◽  
Ping Tian ◽  
...  

Abstract. Aerosols at the top of the planetary boundary layer (PBL) could modify its atmospheric dynamics by redistributing the solar radiation and start to be activated to form low-level cloud at this layer. Black carbon (BC), as an aerosol component efficiently absorbing solar radiation, can introduce heating and positive radiative effects at this sensitive layer, especially in the polluted PBL over the continent. This study presents continuous measurements of detailed BC properties at a mountain site located at the top of the polluted PBL over the North China Plain, during seasons (3 and 4 weeks of data during winter and summer, respectively) with contrasting emission structure and meteorology. The pollution level was persistently influenced by local surface anthropogenic emission on a daily basis through daytime convective mixing, but the concentration was also enhanced or diluted depending on air mass direction, defined as a neutral, polluted and diluted PBL, respectively. Winter was observed to have a higher BC mass fraction (4 %–8 %) than summer (2 %–7 %). By resolving the detailed particle size-resolved mixing state of BC in optical and hygroscopic models, we found an enhanced BC mass absorption cross section (MACBC) for the polluted PBL (up to 13 m2 g−1 at λ = 550 nm), which was 5 % higher during summer than winter due to a smaller BC core size. The higher BC mass fraction in winter corresponded to a lower single-scattering albedo by 0.03–0.09 than summer, especially the lowest for the diluted winter PBL (0.86 ± 0.02). The water supersaturation (SS) required to activate half the number of BC decreased from 0.21 % ± 0.08 % to 0.1 % ± 0.03 % for the winter diluted and polluted PBL and from 0.22 % ± 0.06 % to 0.17 % ± 0.05 % for summer. Notably, at the top of the anthropogenically polluted PBL in both seasons, the enlarged BC with enhanced absorption capacity could also be efficiently droplet activated; e.g. winter (summer) BC with an MAC of 9.84 ± 1.2 (10.7 ± 1) m2 g−1 could be half activated at SS = 0.13 % ± 0.06 % (0.18 % ± 0.05 %). This BC at the top of the PBL can more directly interact with the free troposphere and be transported to a wider region, exerting important direct and indirect radiative impacts.

2020 ◽  
Author(s):  
Shuo Ding ◽  
Dantong Liu ◽  
Delong Zhao ◽  
Kang Hu ◽  
Ping Tian ◽  
...  

Abstract. Aerosols at the top of planetary boundary layer (PBL) could modify its atmospheric dynamics by redistributing the solar radiation, and start to be activated to form low-level cloud at this layer. Black carbon (BC), as an aerosol component efficiently absorbing solar radiation, can introduce heating and positive radiative effects at this sensitive layer, especially in the polluted PBL over the continent. This study presents continuous measurements of detailed BC properties at a mountain site locating at the top of polluted PBL over the North China Plain, during seasons with contrast emission structure and meteorology. The pollution level was persistently influenced by local surface anthropogenic emission on daily basis through daytime convective mixing, but the concentration was also enhanced or diluted depending on air mass direction, defined as neutral, polluted and diluted PBL, respectively. Winter was observed to have a higher BC mass fraction (4–8 %) than summer (2–7 %). By resolving the detailed particle size-resolved mixing state of BC in optical and hygroscopic models, we found enhanced BC mass absorption cross section (MACBC) for polluted PBL (up to 13 m2 g−1 at λ = 550 nm), and summer had a higher MACBC than winter by 5 %. The higher BC mass fraction in winter corresponded with a lower single-scattering albedo by 0.03–0.09 than summer, especially the lowest for diluted winter PBL (0.86 ± 0.02). The water supersaturation (SS) required to activate half number of BC decreased from 0.21 ± 0.08 % to 0.1 ± 0.03 % for winter diluted and polluted PBL; from 0.22 ± 0.06 % to 0.17 ± 0.05 % for summer. Notably, at the top of anthropogenically polluted PBL in both seasons, the enlarged BC with enhanced absorption capacity could be also efficiently droplet activated, e.g. winter (summer) BC with MAC of 9.84 ± 1.2 (10.7 ± 1) m2 g−1 could be half activated at SS = 0.13 ± 0.06 % (0.18 ± 0.05 %). These BC at the top of the PBL can more directly interact with the free troposphere and be transported to a wider region, exerting important direct and indirect radiative impacts.


2013 ◽  
Vol 13 (17) ◽  
pp. 8607-8621 ◽  
Author(s):  
Y. Feng ◽  
V. Ramanathan ◽  
V. R. Kotamarthi

Abstract. Several recent observational studies have shown organic carbon aerosols to be a significant source of absorption of solar radiation. The absorbing part of organic aerosols is referred to as "brown" carbon (BrC). Using a global chemical transport model and a radiative transfer model, we estimate for the first time the enhanced absorption of solar radiation due to BrC in a global model. The simulated wavelength dependence of aerosol absorption, as measured by the absorption Ångström exponent (AAE), increases from 0.9 for non-absorbing organic carbon to 1.2 (1.0) for strongly (moderately) absorbing BrC. The calculated AAE for the strongly absorbing BrC agrees with AERONET spectral observations at 440–870 nm over most regions but overpredicts for the biomass burning-dominated South America and southern Africa, in which the inclusion of moderately absorbing BrC has better agreement. The resulting aerosol absorption optical depth increases by 18% (3%) at 550 nm and 56% (38%) at 380 nm for strongly (moderately) absorbing BrC. The global simulations suggest that the strongly absorbing BrC contributes up to +0.25 W m−2 or 19% of the absorption by anthropogenic aerosols, while 72% is attributed to black carbon, and 9% is due to sulfate and non-absorbing organic aerosols coated on black carbon. Like black carbon, the absorption of BrC (moderately to strongly) inserts a warming effect at the top of the atmosphere (TOA) (0.04 to 0.11 W m−2), while the effect at the surface is a reduction (−0.06 to −0.14 W m−2). Inclusion of the strongly absorption of BrC in our model causes the direct radiative forcing (global mean) of organic carbon aerosols at the TOA to change from cooling (−0.08 W m−2) to warming (+0.025 W m−2). Over source regions and above clouds, the absorption of BrC is higher and thus can play an important role in photochemistry and the hydrologic cycle.


2005 ◽  
Vol 5 (8) ◽  
pp. 2203-2226 ◽  
Author(s):  
R. Van Dingenen ◽  
J.-P. Putaud ◽  
S. Martins-Dos Santos ◽  
F. Raes

Abstract. Aerosol physical properties were measured at the Monte Cimone Observatory (Italy) from 1 June till 6 July 2000. The measurement site is located in the transition zone between the continental boundary layer and the free troposphere (FT), at the border between the Mediterranean area and Central Europe, and is exposed to a variety of air masses. Sub-μm number size distributions, aerosol hygroscopicity near 90% RH, refractory size distribution at 270°C and equivalent black carbon mass were continuously measured. Number size distributions and hygroscopic properties indicate that the site is exposed to aged continental air masses, however during daytime it is also affected by upslope winds. The mixing of this transported polluted boundary layer air masses with relatively clean FT air leads to frequent nucleation events around local noon. Night-time size distributions, including fine and coarse fractions for each air mass episode, have been parameterized by a 3-modal lognormal distribution. Number and volume concentrations in the sub-μm modes are strongly affected by the air mass origin, with highest levels in NW-European air masses, versus very clean, free tropospheric air coming from the N-European sector. During a brief but distinct dust episode, the coarse mode is clearly enhanced. The observed hygroscopic behavior of the aerosol is consistent with the chemical composition described by Putaud et al. (2004), but no closure between known chemical composition and measured hygroscopicity could be made because the hygroscopic properties of the water-soluble organic matter (WSOM) are not known. The data suggest that WSOM is slightly-to-moderately hygroscopic (hygroscopic growth factor GF at 90% relative humidity between 1.05 and 1.51), and that this property may well depend on the air mass origin and history. External mixing of aerosol particles is observed in all air masses through the occurrence of two hygroscopicity modes (average GF of 1.22 and 1.37, respectively). However, the presence of "less" hygroscopic particles has mostly such a low occurrence rate that the average growth factor distribution for each air mass sector actually appears as a single mode. This is not the case for the dust episode, where the external mixing between less hygroscopic and more hygroscopic particles is very prominent, and indicating clearly the occurrence of a dust accumulation mode, extending down to 50 nm particles, along with an anthropogenic pollution mode. The presented physical measurements finally allow us to provide a partitioning of the sub-μm aerosol in four non-overlapping fractions (soluble/volatile, non-soluble/volatile, refractory/non-black carbon, black carbon) which can be associated with separate groups of chemical compounds determined with chemical-analytical techniques (ions, non-water soluble organic matter, dust, elemental carbon). All air masses except the free-tropospheric N-European and Dust episodes show a similar composition within the uncertainty of the data (53%, 37%, 5% and 5% respectively for the four defined fractions). Compared to these sectors, the dust episode shows a clearly enhanced refractory-non-BC fraction (17%), attributed to dust in the accumulation mode, whereas for the very clean N-EUR sector, the total refractory fraction is 25%, of which 13% non-BC and 12% BC.


2013 ◽  
Vol 13 (1) ◽  
pp. 2795-2833 ◽  
Author(s):  
Y. Feng ◽  
V. Ramanathan ◽  
V. R. Kotamarthi

Abstract. Several recent observational studies have shown organic carbon aerosols to be a significant source of absorption of solar radiation. The absorbing part of organic aerosols is referred to as brown carbon. Comparisons with observations indicate that model-simulated aerosol absorption is under-estimated in global models, one of the reasons being the neglect of brown carbon. Using a global chemical transport model coupled with a radiative transfer model, we estimate for the first time the enhanced absorption of solar radiation due to "brown" carbon (BrC) in a global model. When BrC is included, the simulated wavelength dependence of aerosol absorption, as measured by the Angstrom exponent increases from 0.9 to 1.2 and thus agrees better with AERONET spectral observations at 440–870 nm. The resulting absorbing aerosol optical depth increases by 3–18% at 550 nm and up to 56% at 350 nm. The global simulations suggest that BrC contributes up to +0.25 W m−2 or 19% of the absorption by anthropogenic aerosols, of which 72% is attributed to black carbon, and 9% is due to sulfate and non-absorbing organic aerosols coated on black carbon. Like black carbon, the overall forcing of BrC at the top of the atmosphere (TOA) is a warming effect (+0.11 W m−2), while the effect at the surface is a reduction or dimming (−0.14 W m−2). Because of the inclusion of BrC in our model, the direct radiative effect of organic carbonaceous aerosols changes from cooling (−0.08 W m−2) to warming (+0.025 W m−2) at the TOA, on a global mean basis. Over source regions and above clouds, the absorption of BrC is more significant and thus can play an important role in photochemistry and the hydrologic cycle.


2017 ◽  
Author(s):  
Zilin Wang ◽  
Xin Huang ◽  
Aijun Ding

Abstract. Black carbon (BC) has been identified to play a critical role in aerosol-planet boundary layer (PBL) interaction and further deterioration of near-surface air pollution in megacities, which has been named as its dome effect. However, the impacts of key factors that influence this effect, such as the vertical distribution and aging processes of BC, and also the underlying land surface, have not been quantitatively explored yet. Here, based on available in-situ measurements of meteorology and atmospheric aerosols together with the meteorology-chemistry online coupled model, WRF-Chem, we conduct a set of parallel simulations to quantify the roles of these factors in influencing the BC's dome effect and surface haze pollution, and discuss the main implications of the results to air pollution mitigation in China. We found that the impact of BC on PBL is very sensitive to the altitude of aerosol layer. The upper level BC, especially those near the capping inversion, is more essential in suppressing the PBL height and weakening the turbulence mixing. The dome effect of BC tends to be significantly intensified as BC aerosol mixed with scattering aerosols during winter haze events, resulting in a decrease of PBL height by more than 25 %. In addition, the dome effect is more substantial (up to 15 %) in rural areas than that in the urban areas with the same BC loading, indicating an unexpected regional impact of such kind of effect to air quality in countryside. This study suggests that China's regional air pollution would greatly benefit from BC emission reductions, especially those from the elevated sources from the chimneys and also the domestic combustions in rural areas, through weakening the aerosol-boundary layer interactions that triggered by BC.


Solar Energy ◽  
2004 ◽  
Author(s):  
Ramiro L. Rivera ◽  
Karim Altaii

Solar radiation was measured and recorded on a 5-minute, hourly and daily basis at a number of sites on the Caribbean island of Puerto Rico (located from 18° to 18° 30’N latitude and from 65° 30’ to 67° 15’W longitude) over a 24 calendar month time frame. The global solar radiation was measured at four sites (namely: Aguadilla, Ponce, Gurabo, and San Juan). The global solar radiation data was measured by an Eppley Precision Spectral Pyranometer (model PSP) mounted on a horizontal surface. This pyranometer is sensitive to solar radiation in the range of 0.285 ≤ λ ≤ 2.8 μm wavelengths. Statistical analysis such as the daily average, monthly average hourly, monthly average daily, and annual average daily global radiation are presented in this paper. Despite its small size, a 13 percent variation in the global solar radiation has been observed within the island. Reasonable solar radiation values, for solar energy conversion system installation, seem to exist at and possibly around Aguadilla.


2018 ◽  
Author(s):  
Jinhui Gao ◽  
Bin Zhu ◽  
Hui Xiao ◽  
Hanqing Kang ◽  
Chen Pan

Abstract. As an important solar-radiation absorbing aerosol, the effect of black carbon (BC) on surface ozone, by influencing photolysis rate, has been widely discussed by offline model studies. However, BC-boundary layer (BL) interactions also influence surface ozone. Using the online model simulations and processes analysis, we demonstrate the significant impact of BC-BL interaction on surface ozone. The absorbing effect of BC heats the air above the BL and suppresses BL development, which eventually leads to changes in the contributions of ozone through chemical and physical processes (photochemistry, vertical mixing, and advection). Different from previous offline model studies, BL suppression leads large amounts of ozone precursors being confined below the BL which offsetting the influence from the reduction of photolysis rate, thus enhancing ozone photochemical formation before noon. Furthermore, the changes in physical process show a more significant influence on surface ozone. The weakened turbulence entrains much less ozone from the overlying ozone-rich air down to surface. As a result, the net contribution of ozone from physical and chemical processes leads to surface ozone reduction before noon. The maximum reduction reaches to 16.4 ppb at 12:00. In the afternoon, the changes in chemical process are small which influence inconspicuously to surface ozone. However, physical process still influences the surface ozone significantly. Due to the delayed development of the BL, less vertically mixed BL continues to show an obvious ozone gradient near the top of the BL. Therefore, more ozone aloft can be entrained down to the surface, offsetting the surface ozone reduction. Comparing all the changes in the contributions of processes, the change in the contribution of vertical mixing plays a more important role in impacting surface ozone. Our results show the great impacts of BC-BL interactions on surface ozone. And more attention should be paid on the mechanism of aerosol-BL interactions when we deal with the ozone pollution control in China.


Sign in / Sign up

Export Citation Format

Share Document