scholarly journals Early unusual ozone loss during the Arctic winter 2002/2003 compared to other winters

2005 ◽  
Vol 5 (3) ◽  
pp. 665-677 ◽  
Author(s):  
F. Goutail ◽  
J.-P. Pommereau ◽  
F. Lefèvre ◽  
M. van Roozendael ◽  
S. B. Andersen ◽  
...  

Abstract. Ozone loss during the winter 2002/2003 has been evaluated from comparisons between total ozone reported by the SAOZ network and simulated in passive mode by both REPROBUS and SLIMCAT. Despite the fact that the two models have a different approach to calculate the descent inside vortex, both evaluations provide similar results 18±4% using REPROBUS and 20±4% using SLIMCAT and show that the loss started around mid-December, at least ten to twenty days earlier than during any of the previous eleven winters, except 1993/1994. This unusual behaviour is consistent with the low temperatures reported in the stratosphere as well to the signature of early chlorine activation indicated by ground-based, balloon and satellite observations. A significant ozone loss is also simulated by the current versions of two models, but of lesser amplitude compared to SAOZ, 13±2% for REPROBUS and 16±2% for SLIMCAT, the underestimation being already observed by mid-January. The early ozone depletion captured by both model show that chemical depletion did indeed take place in December, predominantly at the illuminated edge of the distorted vortex, but the reason for the underestimation compared to the observations and the differences among the models have still to be investigated.

2020 ◽  
Author(s):  
Florence Goutail ◽  
Jean-Pierre Pommereau ◽  
Andrea Pazmino ◽  
Franck Lefevre ◽  
Cathy Clerbaux ◽  
...  

<p>The amplitude of ozone depletion in the Arctic is monitored every year since 1990 by comparison between total ozone measurements of SAOZ / NDACC UV-Vis spectrometers deployed in the Arctic and 3-D chemical transport model simulations in which ozone is considered as a passive tracer.</p><p>When SAOZ measurements are missing for various reasons, lack of sunlight, station closed or instrument failure, they are replaced since 2017 by IASI/Metop overpasses above the station. These measurements in the thermal Infrared are available all year around, at all latitudes even in the polar night. IASI data have been compared to SAOZ and to 3-D CTM REPROBUS and the agreement is better than 3% at the latitude of the polar circle.</p><p>The method allows determining the evolution of the daily rate of the ozone destruction and the amplitude of the cumulative loss at the end of the winter. The amplitude of the destruction varies between 0-10% in relatively warm and short vortex duration years up to 25-39% in colder and longer ones.</p><p>Since a strong and large vortex centred at the North Pole, PSCs and activated chlorine are still present at all levels in the lower stratosphere on January 9, 2020, there is a good probability that a significant O<sub>3</sub> loss may happen in 2020. But since, as shown by the unprecedented depletion of 39% in 2010/11, the loss depends on the vortex duration, strength and possible re-noxification, it is difficult to predict in advance the amplitude of the cumulative loss at the end of the winter.</p><p>Shown in this presentation will be the evolution of ozone loss and re-noxification in the Arctic vortex during the winter 2019/20 compared to previous winters and REPROBUS and SLIMCAT CTM simulations.</p>


2021 ◽  
Author(s):  
Ramina Alwarda ◽  
Kristof Bognar ◽  
Kimberly Strong ◽  
Martyn Chipperfield ◽  
Sandip Dhomse ◽  
...  

<p>The Arctic winter of 2019-2020 was characterized by an unusually persistent polar vortex and temperatures in the lower stratosphere that were consistently below the threshold for the formation of polar stratospheric clouds (PSCs). These conditions led to ozone loss that is comparable to the Antarctic ozone hole. Ground-based measurements from a suite of instruments at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Canada (80.05°N, 86.42°W) were used to investigate chemical ozone depletion. The vortex was located above Eureka longer than in any previous year in the 20-year dataset and lidar measurements provided evidence of polar stratospheric clouds (PSCs) above Eureka. Additionally, UV-visible zenith-sky Differential Optical Absorption Spectroscopy (DOAS) measurements showed record ozone loss in the 20-year dataset, evidence of denitrification along with the slowest increase of NO<sub>2</sub> during spring, as well as enhanced reactive halogen species (OClO and BrO). Complementary measurements of HCl and ClONO<sub>2</sub> (chlorine reservoir species) from a Fourier transform infrared (FTIR) spectrometer showed unusually low columns that were comparable to 2011, the previous year with significant chemical ozone depletion. Record low values of HNO<sub>3</sub> in the FTIR dataset are in accordance with the evidence of PSCs and a denitrified atmosphere. Estimates of chemical ozone loss were derived using passive ozone from the SLIMCAT offline chemical transport model to account for dynamical contributions to the stratospheric ozone budget.</p>


2017 ◽  
Author(s):  
Farahnaz Khosrawi ◽  
Oliver Kirner ◽  
Björn-Martin Sinnhuber ◽  
Sören Johansson ◽  
Michael Höpfner ◽  
...  

Abstract. The Arctic winter 2015/2016 was one of the coldest stratospheric winters in recent years. A stable vortex formed by early December and the early winter was exceptionally cold. Cold pool temperatures dropped below the Nitric Acid Trihydrate (NAT) existence temperature of about 195 K, thus allowing Polar Stratospheric Clouds (PSCs) to form. The low temperatures in the polar stratosphere persisted until early March allowing chlorine activation and catalytic ozone destruction. Satellite observations indicate that sedimentation of PSC particles led to denitrification as well as dehydration of stratospheric layers. Model simulations of the Arctic winter 2015/2016 nudged toward European Center for Medium-Range Weather Forecasts (ECMWF) analyses data were performed with the atmospheric chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the Polar Stratosphere in a Changing Climate (POLSTRACC) campaign. POLSTRACC is a High Altitude and LOng Range Research Aircraft (HALO) mission aimed at the investigation of the structure, composition and evolution of the Arctic Upper Troposphere and Lower Stratosphere (UTLS). The chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, polar stratospheric clouds as well as cirrus clouds are investigated. In this study an overview of the chemistry and dynamics of the Arctic winter 2015/2016 as simulated with EMAC is given. Further, chemical-dynamical processes such as denitrification, dehydration and ozone loss during the Arctic winter 2015/2016 are investigated. Comparisons to satellite observations by the Aura Microwave Limb Sounder (Aura/MLS) as well as to airborne measurements with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) performed on board of HALO during the POLSTRACC campaign show that the EMAC simulations are in fairly good agreement with observations. We derive a maximum polar stratospheric O3 loss of ~ 2 ppmv or 100 DU in terms of column in mid March. The stratosphere was denitrified by about 8 ppbv HNO3 and dehydrated by about 1 ppmv H2O in mid to end of February. While ozone loss was quite strong, but not as strong as in 2010/2011, denitrification and dehydration were so far the strongest observed in the Arctic stratosphere in the at least past 10 years.


2008 ◽  
Vol 8 (2) ◽  
pp. 251-264 ◽  
Author(s):  
R. Müller ◽  
J.-U. Grooß ◽  
C. Lemmen ◽  
D. Heinze ◽  
M. Dameris ◽  
...  

Abstract. We investigate the extent to which quantities that are based on total column ozone are applicable as measures of ozone loss in the polar vortices. Such quantities have been used frequently in ozone assessments by the World Meteorological Organization (WMO) and also to assess the performance of chemistry-climate models. The most commonly considered quantities are March and October mean column ozone poleward of geometric latitude 63° and the spring minimum of daily total ozone minima poleward of a given latitude. Particularly in the Arctic, the former measure is affected by vortex variability and vortex break-up in spring. The minimum of daily total ozone minima poleward of a particular latitude is debatable, insofar as it relies on one single measurement or model grid point. We find that, for Arctic conditions, this minimum value often occurs in air outside the polar vortex, both in the observations and in a chemistry-climate model. Neither of the two measures shows a good correlation with chemical ozone loss in the vortex deduced from observations. We recommend that the minimum of daily minima should no longer be used when comparing polar ozone loss in observations and models. As an alternative to the March and October mean column polar ozone we suggest considering the minimum of daily average total ozone poleward of 63° equivalent latitude in spring (except for winters with an early vortex break-up). Such a definition both obviates relying on one single data point and reduces the impact of year-to-year variability in the Arctic vortex break-up on ozone loss measures. Further, this measure shows a reasonable correlation (r=–0.75) with observed chemical ozone loss. Nonetheless, simple measures of polar ozone loss must be used with caution; if possible, it is preferable to use more sophisticated measures that include additional information to disentangle the impact of transport and chemistry on ozone.


2014 ◽  
Vol 14 (23) ◽  
pp. 12855-12869 ◽  
Author(s):  
K. Sagi ◽  
D. Murtagh ◽  
J. Urban ◽  
H. Sagawa ◽  
Y. Kasai

Abstract. The Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on board the International Space Station observed ozone in the stratosphere with high precision from October 2009 to April 2010. Although SMILES measurements only cover latitudes from 38° S to 65° N, the combination of data assimilation methods and an isentropic advection model allows us to quantify the ozone depletion in the 2009/2010 Arctic polar winter by making use of the instability of the polar vortex in the northern hemisphere. Ozone data from both SMILES and Odin/SMR (Sub-Millimetre Radiometer) for the winter were assimilated into the Dynamical Isentropic Assimilation Model for OdiN Data (DIAMOND). DIAMOND is an off-line wind-driven transport model on isentropic surfaces. Wind data from the operational analyses of the European Centre for Medium- Range Weather Forecasts (ECMWF) were used to drive the model. In this study, particular attention is paid to the cross isentropic transport of the tracer in order to accurately assess the ozone loss. The assimilated SMILES ozone fields agree well with the limitation of noise induced variability within the SMR fields despite the limited latitude coverage of the SMILES observations. Ozone depletion has been derived by comparing the ozone field acquired by sequential assimilation with a passively transported ozone field initialized on 1 December 2009. Significant ozone loss was found in different periods and altitudes from using both SMILES and SMR data: The initial depletion occurred at the end of January below 550 K with an accumulated loss of 0.6–1.0 ppmv (approximately 20%) by 1 April. The ensuing loss started from the end of February between 575 K and 650 K. Our estimation shows that 0.8–1.3 ppmv (20–25 %) of O3 has been removed at the 600 K isentropic level by 1 April in volume mixing ratio (VMR).


2013 ◽  
Vol 13 (10) ◽  
pp. 5299-5308 ◽  
Author(s):  
J.-P. Pommereau ◽  
F. Goutail ◽  
F. Lefèvre ◽  
A. Pazmino ◽  
C. Adams ◽  
...  

Abstract. An unprecedented ozone loss occurred in the Arctic in spring 2011. The details of the event are revisited from the twice-daily total ozone and NO2 column measurements of the eight SAOZ/NDACC (Système d'Analyse par Observation Zénithale/Network for Detection of Atmospheric Composition Changes) stations in the Arctic. It is shown that the total ozone depletion in the polar vortex reached 38% (approx. 170 DU) by the end of March, which is larger than the 30% of the previous record in 1996. Aside from the long extension of the cold stratospheric NAT PSC period, the amplitude of the event is shown to be resulting from a record daily total ozone loss rate of 0.7% d−1 after mid-February, never seen before in the Arctic but similar to that observed in the Antarctic over the last 20 yr. This high loss rate is attributed to the absence of NOx in the vortex until the final warming, in contrast to all previous winters where, as shown by the early increase of NO2 diurnal increase, partial renoxification occurs by import of NOx or HNO3 from the outside after minor warming episodes, leading to partial chlorine deactivation. The cause of the absence of renoxification and thus of high loss rate, is attributed to a vortex strength similar to that of the Antarctic but never seen before in the Arctic. The total ozone reduction on 20 March was identical to that of the 2002 Antarctic winter, which ended around 20 September, and a 15-day extension of the cold period would have been enough to reach the mean yearly amplitude of the Antarctic ozone hole. However there is no sign of trend since 1994, either in PSC (polar stratospheric cloud) volume (volume of air cold enough to allow formation of PSCs), early winter denitrification, late vortex renoxification, and vortex strength or in total ozone loss. The unprecedented large Arctic ozone loss in 2011 appears to result from an extreme meteorological event and there is no indication of possible strengthening related to climate change.


2015 ◽  
Vol 15 (5) ◽  
pp. 2269-2293 ◽  
Author(s):  
K. Lefever ◽  
R. van der A ◽  
F. Baier ◽  
Y. Christophe ◽  
Q. Errera ◽  
...  

Abstract. This paper evaluates and discusses the quality of the stratospheric ozone analyses delivered in near real time by the MACC (Monitoring Atmospheric Composition and Climate) project during the 3-year period between September 2009 and September 2012. Ozone analyses produced by four different chemical data assimilation (CDA) systems are examined and compared: the Integrated Forecast System coupled to the Model for OZone And Related chemical Tracers (IFS-MOZART); the Belgian Assimilation System for Chemical ObsErvations (BASCOE); the Synoptic Analysis of Chemical Constituents by Advanced Data Assimilation (SACADA); and the Data Assimilation Model based on Transport Model version 3 (TM3DAM). The assimilated satellite ozone retrievals differed for each system; SACADA and TM3DAM assimilated only total ozone observations, BASCOE assimilated profiles for ozone and some related species, while IFS-MOZART assimilated both types of ozone observations. All analyses deliver total column values that agree well with ground-based observations (biases < 5%) and have a realistic seasonal cycle, except for BASCOE analyses, which underestimate total ozone in the tropics all year long by 7 to 10%, and SACADA analyses, which overestimate total ozone in polar night regions by up to 30%. The validation of the vertical distribution is based on independent observations from ozonesondes and the ACE-FTS (Atmospheric Chemistry Experiment – Fourier Transform Spectrometer) satellite instrument. It cannot be performed with TM3DAM, which is designed only to deliver analyses of total ozone columns. Vertically alternating positive and negative biases are found in the IFS-MOZART analyses as well as an overestimation of 30 to 60% in the polar lower stratosphere during polar ozone depletion events. SACADA underestimates lower stratospheric ozone by up to 50% during these events above the South Pole and overestimates it by approximately the same amount in the tropics. The three-dimensional (3-D) analyses delivered by BASCOE are found to have the best quality among the three systems resolving the vertical dimension, with biases not exceeding 10% all year long, at all stratospheric levels and in all latitude bands, except in the tropical lowermost stratosphere. The northern spring 2011 period is studied in more detail to evaluate the ability of the analyses to represent the exceptional ozone depletion event, which happened above the Arctic in March 2011. Offline sensitivity tests are performed during this month and indicate that the differences between the forward models or the assimilation algorithms are much less important than the characteristics of the assimilated data sets. They also show that IFS-MOZART is able to deliver realistic analyses of ozone both in the troposphere and in the stratosphere, but this requires the assimilation of observations from nadir-looking instruments as well as the assimilation of profiles, which are well resolved vertically and extend into the lowermost stratosphere.


2008 ◽  
Vol 8 (2) ◽  
pp. 4911-4947
Author(s):  
B. Vogel ◽  
P. Konopka ◽  
J.-U. Grooß ◽  
R. Müller ◽  
B. Funke ◽  
...  

Abstract. Satellite observations show that the enormous solar proton events (SPEs) in October–November 2003 had significant effects on the composition of the stratosphere and mesosphere in the polar regions. After the October–November 2003 SPEs and in early 2004 significant enhancements of NOx(=NO+NO2) in the upper stratosphere and lower mesosphere in the Northern Hemisphere were observed by several satellite instruments. Here we present global full chemistry calculations performed with the CLaMS model to study the impact of mesospheric NOx intrusions on Arctic polar ozone loss processes in the stratosphere. Several model simulations are preformed with different upper boundary conditions for NOx at 2000 K potential temperature (≈50 km altitude). In our study we focus on the impact of the non-local production of NOx which means the downward transport of enhanced NOx from the mesosphere in the stratosphere. The local production of NOx in the stratosphere is neglected. Our findings show that intrusions of mesospheric air into the stratosphere, transporting high burdens of NOx, affect the composition of the Arctic polar region down to about 400 K (≈17–18 km). We compare our simulated NOx and O3 mixing ratios with satellite observations by ACE-FTS and MIPAS processed at IMK/IAA and derive an upper limit for the ozone loss caused by enhanced mesospheric NOx. Our findings show that in the Arctic polar vortex (Equivalent Lat.>70° N) the accumulated column ozone loss between 350–2000 K potential temperature (≈14–50 km altitude) caused by the SPEs in October–November 2003 in the stratosphere is up to 3.3 DU with an upper limit of 5.5 DU until end of November. Further we found that about 10 DU but lower than 18 DU accumulated ozone loss additionally occurs until end of March 2004 caused by the transport of mesospheric NOx-rich air in early 2004. In the lower stratosphere (350–700 K≈14–27 km altitude) the SPEs of October–November 2003 have negligible small impact on ozone loss processes until end of November and the mesospheric NOx intrusions in early 2004 yield ozone loss about 3.5 DU, but clearly lower than 6.5 DU until end of March. Overall, the non-local production of NOx is an additional variability to the existing variations of the ozone loss observed in the Arctic.


2011 ◽  
Vol 11 (2) ◽  
pp. 3857-3884 ◽  
Author(s):  
W. Feng ◽  
M. P. Chipperfield ◽  
S. Davies ◽  
G. W. Mann ◽  
K. S. Carslaw ◽  
...  

Abstract. A three-dimensional (3-D) chemical transport model (CTM), SLIMCAT, has been used to quantify the effect of denitrification on ozone loss for the Arctic winter/spring 2004/05. The simulated HNO3 is found to be highly sensitive to the polar stratospheric cloud (PSC) scheme used in the model. Here the standard SLIMCAT full chemistry model, which uses a thermodynamic equilibrium PSC scheme, overpredicts the Arctic ozone loss for Arctic winter/spring 2004/05 due to the overestimation of denitrification and stronger chlorine activation than observed. A model run with a detailed microphysical denitrification scheme, DLAPSE (Denitrification by Lagrangian Particle Sedimentation), is less denitrified than the standard model run and better reproduces the observed HNO3 as measured by Airborne SUbmillimeter Radiometer (ASUR) and Aura Microwave Limb Sounder (MLS) instruments. The overestimated denitrification causes a small overestimation of Arctic polar ozone loss (~5–10% at ~17 km) by the standard model. Use of the DLAPSE scheme improves the simulation of Arctic ozone depletion compared with the inferred partial column ozone loss from ozonesondes and satellite data. Overall, denitrification is responsible for a ~30% enhancement in O3 depletion for Arctic winter/spring 2004/05, suggesting that the successful simulation of the impact of denitrification on Arctic ozone depletion also requires the use of a detailed microphysical PSC scheme in the model.


2017 ◽  
Vol 17 (21) ◽  
pp. 12893-12910 ◽  
Author(s):  
Farahnaz Khosrawi ◽  
Oliver Kirner ◽  
Björn-Martin Sinnhuber ◽  
Sören Johansson ◽  
Michael Höpfner ◽  
...  

Abstract. The 2015/2016 Arctic winter was one of the coldest stratospheric winters in recent years. A stable vortex formed by early December and the early winter was exceptionally cold. Cold pool temperatures dropped below the nitric acid trihydrate (NAT) existence temperature of about 195 K, thus allowing polar stratospheric clouds (PSCs) to form. The low temperatures in the polar stratosphere persisted until early March, allowing chlorine activation and catalytic ozone destruction. Satellite observations indicate that sedimentation of PSC particles led to denitrification as well as dehydration of stratospheric layers. Model simulations of the 2015/2016 Arctic winter nudged toward European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data were performed with the atmospheric chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the Polar Stratosphere in a Changing Climate (POLSTRACC) campaign. POLSTRACC is a High Altitude and Long Range Research Aircraft (HALO) mission aimed at the investigation of the structure, composition and evolution of the Arctic upper troposphere and lower stratosphere (UTLS). The chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, PSCs and cirrus clouds are investigated. In this study, an overview of the chemistry and dynamics of the 2015/2016 Arctic winter as simulated with EMAC is given. Further, chemical–dynamical processes such as denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter are investigated. Comparisons to satellite observations by the Aura Microwave Limb Sounder (Aura/MLS) as well as to airborne measurements with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) performed aboard HALO during the POLSTRACC campaign show that the EMAC simulations nudged toward ECMWF analysis generally agree well with observations. We derive a maximum polar stratospheric O3 loss of ∼ 2 ppmv or 117 DU in terms of column ozone in mid-March. The stratosphere was denitrified by about 4–8 ppbv HNO3 and dehydrated by about 0.6–1 ppmv H2O from the middle to the end of February. While ozone loss was quite strong, but not as strong as in 2010/2011, denitrification and dehydration were so far the strongest observed in the Arctic stratosphere in at least the past 10 years.


Sign in / Sign up

Export Citation Format

Share Document