scholarly journals Large surface radiative forcing from topographic blowing snow residuals measured in the High Arctic at Eureka

2009 ◽  
Vol 9 (6) ◽  
pp. 1847-1862 ◽  
Author(s):  
G. Lesins ◽  
L. Bourdages ◽  
T. J. Duck ◽  
J. R. Drummond ◽  
E. W. Eloranta ◽  
...  

Abstract. Ice crystals, also known as diamond dust, are suspended in the boundary layer air under clear sky conditions during most of the Arctic winter in Northern Canada. Occasionally ice crystal events can produce significantly thick layers with optical depths in excess of 2.0 even in the absence of liquid water clouds. Four case studies of high optical depth ice crystal events at Eureka in the Nunavut Territory of Canada during the winter of 2006/07 are presented. They show that the measured ice crystal surface infrared downward radiative forcing ranged from 8 to 36 W m−2 in the wavelength band from 5.6 to 20 μm for 532 nm optical depths ranging from 0.2 to 1.7. MODIS infrared and visible images and the operational radiosonde wind profile were used to show that these high optical depth events were caused by surface snow being blown off 600 to 800 m high mountain ridges about 20 to 30 km North-West of Eureka and advected by the winds towards Eureka as they settled towards the ground within the highly stable boundary layer. This work presents the first study that demonstrates the important role that surrounding topography plays in determining the occurrence of high optical depth ice crystal events from residual blowing snow that becomes a source of boundary layer ice crystals distinct from the classical diamond dust phenomenon.

2008 ◽  
Vol 8 (5) ◽  
pp. 17691-17737
Author(s):  
G. Lesins ◽  
L. Bourdages ◽  
T. J. Duck ◽  
J. R. Drummond ◽  
E. W. Eloranta ◽  
...  

Abstract. Ice crystals, also known as diamond dust, are suspended in the boundary layer air under clear sky conditions during most of the Arctic winter in Northern Canada. Occasionally ice crystal events can produce significantly thick layers with optical depths in excess of 2.0 even in the absence of liquid water clouds. Four case studies of high optical depth ice crystal events at Eureka in the Nunavut Territory of Canada during the winter of 2006–2007 are presented. They show that the measured ice crystal surface infrared downward radiative forcing ranged from 8 to 36 W m−2 in the wavelength band from 5.6 to 20 μm for visible optical depths ranging from 0.2 to 1.7. MODIS infrared and visible images and the operational radiosonde wind profile were used to show that these high optical depth events were caused by surface snow being blown off 600 to 800 m high mountain ridges about 20 to 30 km North-West of Eureka and advected by the winds towards Eureka as they settled towards the ground within the highly stable boundary layer. This work presents the first study that demonstrates the important role that surrounding topography plays in determining the occurrence of high optical depth ice crystal events and points to a new source of boundary layer ice crystal events distinct from the classical diamond dust phenomenon.


2021 ◽  
Author(s):  
Xin Yang ◽  
Anne-M Blechschmidt2 ◽  
Kristof Bognar ◽  
Audra McClure–Begley ◽  
Sara Morris ◽  
...  

<p>Within the framework of the International Arctic Systems for Observing the Atmosphere (IASOA), we report a modelling-based study on surface ozone across the Arctic. We use surface ozone from six sites: Summit (Greenland), Pallas (Finland), Barrow (USA), Alert (Canada), Tiksi (Russia), and Villum Research Station (VRS) at Station Nord (North Greenland, Danish Realm), and ozonesonde data from three Canadian sites: Resolute, Eureka, and Alert. Two global chemistry models: a global chemistry transport model (p-TOMCAT) and a global chemistry climate model (UKCA), are used for model-data comparisons. Remotely sensed data of BrO from the GOME-2 satellite instrument at Eureka, Canada are used for model validation.</p><p>The observed climatology data show that spring surface ozone at coastal Arctic is heavily depleted, making ozone seasonality at Arctic coastal sites distinctly different from that at inland sites. Model simulations show that surface ozone can be greatly reduced by bromine chemistry. In April, bromine chemistry can cause a net ozone loss (monthly mean) of 10-20 ppbv, with almost half attributable to open-ocean-sourced bromine and the rest to sea-ice-sourced bromine. However, the open-ocean-sourced bromine, via sea spray bromide depletion, cannot by itself produce ozone depletion events (ODEs) (defined as ozone volume mixing ratios VMRs < 10 ppbv). In contrast, sea-ice-sourced bromine, via sea salt aerosol (SSA) production from blowing snow, can produce ODEs even without bromine from sea spray, highlighting the importance of sea ice surface in polar boundary layer chemistry.</p><p>Modelled total inorganic bromine (Br<sub>Y</sub>) over the Arctic sea ice  is sensitive to model configuration, e.g., under the same bromine loading, Br<sub>Y</sub> in the Arctic spring boundary layer in the p-TOMCAT control run (i.e., with all bromine emissions) can be 2 times that in the UKCA control run. Despite the model differences, both model control runs can successfully reproduce large bromine explosion events (BEEs) and ODEs in polar spring. Model-integrated tropospheric column BrO generally matches GOME-2 tropospheric columns within ~50% in UKCA and a factor of 2 in p-TOMCAT. The success of the models in reproducing both ODEs and BEEs in the Arctic indicates that the relevant parameterizations implemented in the models work reasonably well, which supports the proposed mechanism of SSA production and bromide release on sea ice. Given that sea ice is a large source of SSA and halogens, changes in sea ice type and extent in a warming climate will influence Arctic boundary layer chemistry, including the oxidation of atmospheric elemental mercury. Note that this work dose not necessary rule out other possibilities that may act as a source of reactive bromine from sea ice zone.</p>


2021 ◽  
Author(s):  
Bianca Zilker ◽  
Anne-Marlene Blechschmidt ◽  
Sora Seo ◽  
Ilias Bougoudis ◽  
Tim Bösch ◽  
...  

<p align="justify">Bromine Explosion Events (BEEs) have been observed since the late 1990s in the Arctic and Antarctic during polar spring and play an important role in tropospheric chemistry. In a heterogeneous, autocatalytic, chemical chain reaction cycle, inorganic bromine is released from the cryosphere into the troposphere and depletes ozone often to below detection limit. Ozone is a source of the most important tropospheric oxidizing agent OH and the oxidizing capacity and radiative forcing of the troposphere are thus being impacted. Bromine also reacts with gaseous mercury, thereby facilitating the deposition of toxic mercury, which has adverse environmental impacts. C<span lang="en-US">old saline surfaces, such as young sea ice, frost flowers, and snow are likely bromine sources </span><span lang="en-US">during BEEs. </span><span lang="en-US">D</span>ifferent meteorological conditions seem to favor the development of these events: on the one hand, low wind speeds and a stable boundary layer, where bromine can accumulate and deplete ozone, and on the other hand, high wind speeds above approximately 10 m/s with blowing snow and a higher unstable boundary layer. In high wind speed conditions – occurring for example along fronts of polar cyclones – recycling of bromine on snow and aerosol surfaces may take place aloft.</p> <p align="justify">To improve the understanding of weather conditions and bromine sources leading to the development of BEEs, case studies using high resolution S5P TROPOMI retrievals of tropospheric BrO together with meteorological simulations by the WRF model and Lagrangian transport simulations of BrO by FLEXPART-WRF are carried out. WRF simulations show, that high tropospheric BrO columns observed by TROPOMI often coincide with areas of high wind speeds. This probably points to release of bromine from blowing snow with cold temperatures favoring the bromine explosion reactions. However, some BrO plumes are observed over areas with very low wind speed and a stable low boundary layer. To monitor the amount of ozone depleted during a BEE, ozone sonde measurements from Ny-Ålesund are compared with MAX-DOAS BrO profiles. First evaluations show a drastic decrease in ozone, partly below the detection limit, while measuring enhanced BrO values at the same time. <span lang="en-US">In order to analyze </span><span lang="en-US">the possible origin</span><span lang="en-US"> of the BrO </span><span lang="en-US">plume </span><span lang="en-US">arriving in </span><span lang="en-US">Ny-</span><span lang="en-US">Å</span><span lang="en-US">lesund</span><span lang="en-US">, </span><span lang="en-US">and to investigate its transportation route, </span><span lang="en-US">FLEXPART-WRF runs are </span><span lang="en-US">executed </span><span lang="en-US">for the times of observed ozone depletion.</span></p> <p align="justify"> </p> <p align="justify"><em>This work was supported by the</em><em> DFG funded Transregio-project TR 172 “Arctic Amplification </em>(AC)<sup>3</sup><em>“.</em></p>


2015 ◽  
Vol 143 (12) ◽  
pp. 5017-5033 ◽  
Author(s):  
Bart Geerts ◽  
Binod Pokharel ◽  
David A. R. Kristovich

Abstract Winter storms are often accompanied by strong winds, especially over complex terrain. Under such conditions freshly fallen snow can be readily suspended. Most of that snow will be redistributed across the landscape (e.g., behind obstacles), but some may be lofted into the turbulent boundary layer, and even into the free atmosphere in areas of boundary layer separation near terrain crests, or in hydraulic jumps. Blowing snow ice crystals, mostly small fractured particles, thus may enhance snow growth in clouds. This may explain why shallow orographic clouds, with cloud-top temperatures too high for significant ice initiation, may produce (usually light) snowfall with remarkable persistence. While drifting snow has been studied extensively, the impact of blowing snow on precipitation on snowfall itself has not. Airborne radar and lidar data are presented to demonstrate the presence of blowing snow, boundary layer separation, and the glaciation of shallow supercooled orographic clouds. Further evidence for the presence of blowing snow comes from a comparison between snow size distributions measured at Storm Peak Laboratory (SPL) on Mount Werner (Colorado) versus those measured aboard an aircraft while passing overhead, and from an examination of snow size distributions at SPL under diverse weather conditions. Ice splintering following the collision of supercooled droplets on rimed surfaces such as trees does not appear to explain the large concentrations of small ice crystals sometimes observed at SPL.


Scientifica ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-20 ◽  
Author(s):  
Janet S. H. Lorv ◽  
David R. Rose ◽  
Bernard R. Glick

Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions.


2020 ◽  
Author(s):  
Kristof Bognar ◽  
Xiaoyi Zhao ◽  
Kimberly Strong ◽  
Rachel Y.-W. Chang ◽  
Udo Frieß ◽  
...  

<p><span>Bromine explosions and corresponding ozone depletion events (ODEs) are common in the Arctic spring. The snowpack on sea ice and sea salt aerosols (SSA) are both thought to release bromine, but the relative contribution of each source is not yet known. Furthermore, the role of atmospheric conditions is not fully understood. Long-term measurements of bromine monoxide (BrO) provide useful insight into the underlying processes of bromine activation. Here we present a four-year dataset (2016-2019) of springtime BrO partial columns retrieved from Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements in Eureka, Canada (80.1° N, 86.4° W). Due to the altitude of the measurement site (610 m), the measurements often represent BrO above the shallow boundary layer, and the strength of the temperature inversion has limited impact on the BrO partial columns. When the boundary layer is deep, however, the effects of the enhanced vertical mixing manifest as an increase in the minimum BrO values (and reduced ODE frequency) for wind speeds of ~8 m/s or greater. We find that BrO events show two modes differentiated by local wind direction and air mass history. Longer time spent in first-year sea ice areas corresponds to increased BrO for one of these modes only. We argue that snow on multi-year ice (salted and acidified by Arctic haze) might also contribute to bromine release. The MAX-DOAS measurements show that high aerosol optical depth is required to maintain lofted BrO. In situ measurements indicate that accumulation mode aerosols (mostly Arctic haze) have no direct correlation with BrO. The presence of coarse mode aerosols, however, is a necessary and sufficient condition for observing enhanced BrO at Eureka. The measurements of coarse mode aerosols are consistent with SSA generated from blowing snow. The good correlation between BrO and coarse mode aerosols (R<sup>2</sup> up to 0.57) supports the view that SSA is a direct source of bromine to the polar troposphere.</span></p>


2017 ◽  
Author(s):  
Alexander Beck ◽  
Jan Henneberger ◽  
Jacob P. Fugal ◽  
Robert O. David ◽  
Larissa Lacher ◽  
...  

Abstract. In-situ cloud observations at mountain-top research stations regularly measure ice crystal number concentrations (ICNCs) orders of magnitudes higher than expected from measurements of ice nucleating particle (INP) concentrations. Thus, several studies suggest that mountain-top in-situ measurements are influenced by surface processes, e.g. blowing snow, hoar frost or riming on snow covered trees, rocks and the snow surface. A strong impact on the observed ICNCs on mountain-top stations by surface processes may limit the relevance of such measurements and possibly affects the development of orographic clouds. This study assesses the impact of surface processes on in-situ cloud observations at the Sonnblick Observatory in the Hohen Tauern Region, Austria. Vertical profiles of ICNCs above a snow covered surface were observed up to a height of 10 m. The ICNC decreases at least by a factor of two at 10 m, if the ICNC at the surface is larger than 100 L−1. This decrease can be up to one order of magnitude during in-cloud conditions and reached its maximum of more than two orders of magnitudes when the station was not in cloud. For one case study, the ICNC for regular and irregular ice crystals showed a similar relative decrease with height, which cannot be explained by the above mentioned surface processes. Therefore, two near-surface processes are proposed to enrich ICNCs and explain these finding. Either sedimenting ice crystals are captured in a turbulent layer above the surface or the ICNC is enhanced in a convergence zone, because the cloud is forced over a mountain. These two processes would also have an impact on ICNCs measured at mountain-top stations if the surrounding surface is not snow covered. Conclusively, this study strongly suggests that ICNCs measured at mountain-top stations are not representative for the properties of a cloud further away from the surface.


2017 ◽  
Vol 56 (2) ◽  
pp. 433-453 ◽  
Author(s):  
Oliver Schlenczek ◽  
Jacob P. Fugal ◽  
Gary Lloyd ◽  
Keith N. Bower ◽  
Thomas W. Choularton ◽  
...  

AbstractDuring the Cloud and Aerosol Characterization Experiment (CLACE) 2013 field campaign at the High Altitude Research Station Jungfraujoch, Switzerland, optically thin pure ice clouds and ice crystal precipitation were measured using holographic and other in situ particle instruments. For cloud particles, particle images, positions in space, concentrations, and size distributions were obtained, allowing one to extract size distributions classified by ice crystal habit. Small ice crystals occurring under conditions with a vertically thin cloud layer above and a stratocumulus layer approximately 1 km below exhibit similar properties in size and crystal habits as Antarctic/Arctic diamond dust. Also, ice crystal precipitation stemming from midlevel clouds subsequent to the diamond dust event was observed with a larger fraction of ice crystal aggregates when compared with the diamond dust. In another event, particle size distributions could be derived from mostly irregular ice crystals and aggregates, which likely originated from surface processes. These particles show a high spatial and temporal variability, and it is noted that size and habit distributions have only a weak dependence on the particle number concentration. Larger ice crystal aggregates and rosette shapes of some hundred microns in maximum dimension could be sampled as a precipitating cirrostratus cloud passed the site. The individual size distributions for each habit agree well with lognormal distributions. Fitted parameters to the size distributions are presented along with the area-derived ice water content, and the size distributions are compared with other measurements of pure ice clouds made in the Arctic and Antarctic.


1970 ◽  
Vol 8 (3) ◽  
pp. 11-24 ◽  
Author(s):  
Deepti Sharma ◽  
Manjit Singh ◽  
Darshan Singh

The present study deals with impact of post-harvest biomass burning on aerosol characteristics over Patiala (Lat: 30.33°N; Long: 76.4°E), Punjab state, India during 2008-09, using ground based and satellite data. Results of Aerosol Optical Depth (AOD) measurements using MICROTOPS II show significant variations with highest AOD500 ≈2.65 in October 2008 and ≈1.71 in November 2009. The maximum monthly mean values of angstrom parameters “α” and “β” are 1.13±0.16 and 0.39±0.20, respectively. Daily averaged values of Black Carbon (BC) mass concentration during day time show significant variations (8-18μg/m³) yielding SSA varying from 0.76-0.88 during highly turbid days and 0.95-0.97 during less turbid days. During highly turbid days, the estimated atmospheric radiative forcing using SBDART varies from +43.0 to +86.5Wm-2 suggesting high BC concentration in the atmosphere associated with paddy residue burning in the fields. DOI: http://dx.doi.org/10.3126/jie.v8i3.5927 JIE 2011; 8(3): 11-24


2017 ◽  
Vol 17 (11) ◽  
pp. 6693-6704 ◽  
Author(s):  
Katharina Loewe ◽  
Annica M. L. Ekman ◽  
Marco Paukert ◽  
Joseph Sedlar ◽  
Michael Tjernström ◽  
...  

Abstract. The Arctic climate is changing; temperature changes in the Arctic are greater than at midlatitudes, and changing atmospheric conditions influence Arctic mixed-phase clouds, which are important for the Arctic surface energy budget. These low-level clouds are frequently observed across the Arctic. They impact the turbulent and radiative heating of the open water, snow, and sea-ice-covered surfaces and influence the boundary layer structure. Therefore the processes that affect mixed-phase cloud life cycles are extremely important, yet relatively poorly understood. In this study, we present sensitivity studies using semi-idealized large eddy simulations (LESs) to identify processes contributing to the dissipation of Arctic mixed-phase clouds. We found that one potential main contributor to the dissipation of an observed Arctic mixed-phase cloud, during the Arctic Summer Cloud Ocean Study (ASCOS) field campaign, was a low cloud droplet number concentration (CDNC) of about 2 cm−3. Introducing a high ice crystal concentration of 10 L−1 also resulted in cloud dissipation, but such high ice crystal concentrations were deemed unlikely for the present case. Sensitivity studies simulating the advection of dry air above the boundary layer inversion, as well as a modest increase in ice crystal concentration of 1 L−1, did not lead to cloud dissipation. As a requirement for small droplet numbers, pristine aerosol conditions in the Arctic environment are therefore considered an important factor determining the lifetime of Arctic mixed-phase clouds.


Sign in / Sign up

Export Citation Format

Share Document