scholarly journals Tempo-spatial variation of emission inventories of speciated volatile organic compounds from on-road vehicles in China

2009 ◽  
Vol 9 (18) ◽  
pp. 6983-7002 ◽  
Author(s):  
H. Cai ◽  
S. D. Xie

Abstract. Emission inventories of sixty-seven speciated non-methane volatile organic compounds (NMVOC) from on-road vehicles in China were estimated for the period of 1980–2005, using seven NMVOC emission profiles, which were summarized based on local and international measurements from published literatures dealing with specific vehicle categories running under particular modes. Results show an exponential growth trend of China's historical emissions of alkanes, alkenes, alkines, aromatics and carbonyls during the period of 1980–2005, increasing from 63.9, 39.3, 6.9, 36.8 and 24.1 thousand tons, respectively, in 1980 to 2778.2, 1244.5, 178.7, 1351.7 and 406.0 thousand tons, respectively, in 2005, which coincided well with China's economic growth. Emission inventories of alkenes, aromatics and carbonyls were gridded at a high resolution of 40 km×40 km for air quality simulation and health risk evaluation, using the geographic information system (GIS) methodology. Spatial distribution of speciated NMVOC emissions shows a clear difference in emission densities between developed eastern and relatively underdeveloped western and inland China. Besides, the appearance and expansion of high-emission areas was another notable characteristic of spatial distribution of speciated NMVOC emissions during the period. Emission contributions of vehicle categories to speciated NMVOC groups showed annual variation, due to the variance in the provincial emissions and in the relative fractions of the seven emission profiles adopted at the provincial level. Highly reactive and toxic compounds accounted for high proportions of emissions of speciated NMVOC groups. The most abundant compounds were isopentane, pentane and butane from alkanes; ethene, propene, 2-methyl-2-butene and ethyne from alkenes and alkines; benzene, toluene, ethylbenzene, o-xylene, and m,p-xylene (BTEX) and 1,2,4-trimethylbenzene from aromatics and formaldehyde, acetaldehyde, benzaldehyde and acetone from carbonyls.

2009 ◽  
Vol 9 (3) ◽  
pp. 11051-11085 ◽  
Author(s):  
H. Cai ◽  
S. D. Xie

Abstract. Emission inventories of sixty-nine speciated non-methane volatile organic compounds (NMVOC) from on-road vehicles in China were estimated for the period of 1980–2005, using seven NMVOC emission profiles, which were summarized based on local and international measurements from published literatures dealing with specific vehicle categories running under particular modes. Results show an exponential growth trend of China's historical emissions of alkanes, alkenes, alkines, aromatics and carbonyls during the period of 1980–2005, increasing from 63.9, 39.3, 6.9, 36.8 and 24.1 thousand tons, respectively, in 1980 to 2781.4, 1244.9, 178.5, 1350.7 and 403.3 thousand tons, respectively, in 2005, which coincided well with China's economic growth. Emission inventories of alkenes, aromatics and carbonyls were gridded at a high resolution of 40 km×40 km for air quality simulation and health risk evaluation, using the geographic information system (GIS) methodology. Spatial distribution of speciated NMVOC emissions shows a clear difference in emission densities between developed eastern and relatively underdeveloped western and inland China. Besides, the appearance and expansion of high-emission areas was another notable characteristic of spatial distribution of speciated NMVOC emissions during the period. Emission contributions of vehicle categories to speciated NMVOC groups showed annual variation, due to the variance in the provincial emissions and in the relative fractions of the seven emission profiles adopted at the provincial level. Highly reactive and toxic compounds accounted for high proportions of emissions of speciated NMVOC groups. The most abundant compounds were isopentane, pentane and butane from alkanes; ethene, propene, 2-methyl-2-butene and ethyne from alkenes and alkines; benzene, toluene, ethylbenzene, o-xylene, and m,p-xylene (BTEX) and 1,2,4-trimethylbenzene from aromatics and formaldehyde, acetaldehyde, benzaldehyde, acetone and acrolein from carbonyls.


1982 ◽  
Vol 65 (6) ◽  
pp. 1370-1374
Author(s):  
Rein Otson ◽  
David T Williams ◽  
Peter D Bothwell

Abstract A static headspace technique and previously developed and evaluated dynamic headspace and liquid-liquid extraction techniques were applied in a survey of volatile organic compounds in water at 30 Canadian potable water treatment facilities. Of the 43 compounds investigated, 27 compounds were detected in the water samples. Chloroform and bromodichloromethane occurred most frequently in treated water, and trichloroethylene, tetrachloroethylene, 1,2-dichloroethane, dichloromethane, benzene, toluene, ethylbenzene, and the xylenes occurred frequently in both treated and raw water. Only chloroform occurred frequently at levels above 10 μg/L in treated water. Generally, higher levels of organic compounds were found during August-September than during November-December.


Author(s):  
Kristofer P. Isaacson ◽  
Caitlin R. Proctor ◽  
Q. Erica Wang ◽  
Ethan Y. Edwards ◽  
Yoorae Noh ◽  
...  

Plastic pipes are susceptible to thermal degradation which can produce volatile organic compounds such as benzene, toluene, ethylbenzene, and xylene that leach into drinking water.


2019 ◽  
Vol 19 (24) ◽  
pp. 15467-15482 ◽  
Author(s):  
◽  
Baerbel Sinha ◽  
Vinayak Sinha

Abstract. In this study we undertook quantitative source apportionment for 32 volatile organic compounds (VOCs) measured at a suburban site in the densely populated northwest Indo-Gangetic Plain using the US EPA PMF 5.0 model. Six sources were resolved by the PMF model. In descending order of their contribution to the total VOC burden these are “biofuel use and waste disposal” (23.2 %), “wheat-residue burning”(22.4 %), “cars” (16.2 %), “mixed daytime sources”(15.7 %) “industrial emissions and solvent use”(11.8 %), and “two-wheelers” (8.6 %). Wheat-residue burning is the largest contributor to the total ozone formation potential (32.4 %). For the emerging contaminant isocyanic acid, photochemical formation from precursors (37 %) and wheat-residue burning (25 %) were the largest contributors to human exposure. Wheat-residue burning was also the single largest source of the photochemical precursors of isocyanic acid, namely, formamide, acetamide and propanamide, indicating that this source must be most urgently targeted to reduce human concentration exposure to isocyanic acid in the month of May. Our results highlight that for accurate air quality forecasting and modeling it is essential that emissions are attributed only to the months in which the activity actually occurs. This is important for emissions from crop residue burning, which occur in May and from mid-October to the end of November. The SOA formation potential is dominated by cars (36.9 %) and two-wheelers (21.1 %), which also jointly account for 47% of the human class I carcinogen benzene in the PMF model. This stands in stark contrast to various emission inventories which estimate only a minor contribution of the transport sector to the benzene exposure (∼10 %) and consider residential biofuel use, agricultural residue burning and industry to be more important benzene sources. Overall it appears that none of the emission inventories represent the regional emissions in an ideal manner. Our PMF solution suggests that transport sector emissions may be underestimated by GAINSv5.0 and EDGARv4.3.2 and overestimated by REASv2.1, while the combined effect of residential biofuel use and waste disposal emissions as well as the VOC burden associated with solvent use and industrial sources may be overestimated by all emission inventories. The agricultural waste burning emissions of some of the detected compound groups (ketones, aldehydes and acids) appear to be missing in the EDGARv4.3.2 inventory.


2020 ◽  
Vol 13 (10) ◽  
pp. 1193-1201
Author(s):  
Khomotso Semenya ◽  
Fannie Machete

Abstract This paper presents the extent to which kitchen structures influence household exposure to firewood-induced volatile organic compounds (VOCs). The sample consisted of 69 firewood users who were conveniently sampled from Senwabarwana Villages. An Integrated Environmental Health Risk Assessment framework (IEHRA) was adopted as the research methods of the current study. The VOC samples were collected from selected priority firewood species used in the study area, namely mushu (Umbrella thorn), mohwelere (red bushwillow), moretshe (Sickle bush), motswiri (Leadwood) and mokgwa (Black monkey thorn). Four VOCs, namely benzene, toluene, ethylbenzene and xylene were analysed from each of the selected plant species. Available literature shows that these VOCs are associated with the kind of common firewood used in the study area. The outcomes of this study reveal that mushu emits the highest concentration of the four selected VOCs, followed by moretshe, mohwelere, mokgwa and motswiri, respectively. The influence of kitchen structural factors such as number and positioning of windows, fireplace or stove type, roofing material and designs, among others on the concentration and indoor dispersion of VOCs was also investigated. Behavioural practices of households during fire making such as opening or closing of doors and windows during cooking, water heating and space heating were also found to influence exposure levels. Consequently, low VOCs emitting firewood species and kitchen structural designs have been confirmed as the key drivers of firewood-induced VOC exposure.


2014 ◽  
Vol 14 (12) ◽  
pp. 5871-5891 ◽  
Author(s):  
M. Wang ◽  
M. Shao ◽  
W. Chen ◽  
B. Yuan ◽  
S. Lu ◽  
...  

Abstract. Understanding the sources of volatile organic compounds (VOCs) is essential for ground-level ozone and secondary organic aerosol (SOA) abatement measures. We made VOC measurements at 27 sites and online observations at an urban site in Beijing from July 2009 to January 2012. Based on these measurement data, we determined the spatial and temporal distribution of VOCs, estimated their annual emission strengths based on their emission ratios relative to carbon monoxide (CO), and quantified the relative contributions of various sources using the chemical mass balance (CMB) model. These results from ambient measurements were compared with existing emission inventories to evaluate the spatial distribution, species-specific emissions, and source structure of VOCs in Beijing. The measured VOC distributions revealed a hotspot in the southern suburban area of Beijing, whereas current emission inventories suggested that VOC emissions were concentrated in downtown areas. Compared with results derived from ambient measurements, the annual inventoried emissions of oxygenated VOC (OVOC) species and C2–C4 alkanes may be underestimated, while the emissions of styrene and 1,3-butadiene may be overestimated by current inventories. Source apportionment using the CMB model identified vehicular exhaust as the most important VOC source, with the relative contribution of 49%, in good agreement with the 40–51% estimated by emission inventories. The relative contribution of paint and solvent utilization obtained from the CMB model was 14%, significantly lower than the value of 32% reported by one existing inventory. Meanwhile, the relative contribution of liquefied petroleum gas (LPG) usage calculated using the CMB model was 6%, whereas LPG usage contribution was not reported by current emission inventories. These results suggested that VOC emission strengths in southern suburban area of Beijing, annual emissions of C2–C4 alkanes, OVOCs and some alkenes, and the contributions of solvent and paint utilization and LPG usage in current inventories all require significant revisions.


2014 ◽  
Vol 77 (22-24) ◽  
pp. 1502-1521 ◽  
Author(s):  
Seong Kwang Lim ◽  
Han Seung Shin ◽  
Kyung Sil Yoon ◽  
Seung Jun Kwack ◽  
Yoon Mi Um ◽  
...  

2009 ◽  
Vol 9 (4) ◽  
pp. 17297-17333 ◽  
Author(s):  
B. Langford ◽  
E. Nemitz ◽  
E. House ◽  
G. J. Phillips ◽  
D. Famulari ◽  
...  

Abstract. Concentrations and fluxes of eight volatile organic compounds (VOCs) were measured during October 2006 from a high telecom tower above central London, as part of the CityFlux contribution to the REPARTEE I campaign. A continuous flow disjunct eddy covariance technique with analysis by proton transfer reaction mass spectrometry was used. Daily averaged VOC mixing ratios were within the range 1–19 ppb for the oxygenated compounds (methanol, acetaldehyde and acetone) and 0.2–1.3 ppb for the aromatics (benzene, toluene and ethylbenzene). Typical VOC fluxes were in the range 0.1–1.0 mg m−2 h−1. There was a non-linear relationship between VOC fluxes and traffic density for most of the measured compounds. Traffic activity was estimated to account for approximately 70% of the aromatic compound fluxes, whereas non-traffic related sources were found to be more important for methanol and isoprene fluxes. The measured fluxes were comparable to the estimates of the UK national atmospheric emission inventory for the aromatic VOCs and CO. In contrast, fluxes of the oxygenated compounds were about three times larger than inventory estimates. For isoprene and acetonitrile this difference was many times larger. At temperatures over 25°C it is estimated that more than half the isoprene observed in central London is of biogenic origin.


Author(s):  
Lyazzat Serik ◽  
Olga Ibragimova ◽  
Gulim Ussenova ◽  
Nassiba Baimatova

The pollution of ambient air is one of the main sources of risk to human health in the world. There is a direct relationship between the level of air pollution and risk of the development of cancer, cardiovascular, respiratory and other diseases. Benzene, toluene, ethylbenzene and o-xylene (BTEX) are one of the most toxic volatile organic compounds. The aim of this study was to quantify BTEX in air of Taldykorgan, Kazakhstan using solid-phase microextraction followed by gas chromatography with mass-spectrometric detection. In different sampling seasons, average concentrations of four BTEX analytes varied from 7.5 to 27 µg/m3, from 15 to 250 µg/m3, from 2.4 to 12.8 µg/m3 and from 2.6 to 21 µg/m3, respectively. The highest concentrations of TEX were detected in autumn, while the highest concentrations of benzene were observed in winter. Toluene-to-benzene ratios in almost all measurements were above 1 indicating that the traffic emissions are the main source of air pollution with BTEX.


Sign in / Sign up

Export Citation Format

Share Document