scholarly journals Stratospheric water vapour and high climate sensitivity in a version of the HadSM3 climate model

2010 ◽  
Vol 10 (3) ◽  
pp. 6241-6255 ◽  
Author(s):  
M. M. Joshi ◽  
M. J. Webb ◽  
A. C. Maycock ◽  
M. Collins

Abstract. It has been shown previously that one member of the Met Office Hadley Centre single-parameter perturbed physics ensemble – the so-called "low entrainment parameter" member – has a much higher climate sensitivity than other individual parameter perturbations. Here we show that the concentration of stratospheric water vapour in this member is over three times higher than observations, and, more importantly for climate sensitivity, increases significantly when climate warms. The large surface temperature response of this ensemble member is more consistent with a feedback associated with the stratospheric humidity change, rather than high clouds as has been previously suggested. The direct relationship between the bias in the control state (elevated stratospheric humidity) and the cause of the high climate sensitivity (a further increase in stratospheric humidity) lends further doubt as to the realism of this particular integration. This, together with other evidence, lowers the likelihood that the climate system's physical sensitivity might be significantly higher than the likely upper range quoted in the Intergovernmental Panel on Climate Change's fourth assessment report.

2010 ◽  
Vol 10 (15) ◽  
pp. 7161-7167 ◽  
Author(s):  
M. M. Joshi ◽  
M. J. Webb ◽  
A. C. Maycock ◽  
M. Collins

Abstract. It has been shown previously that one member of the Met Office Hadley Centre single-parameter perturbed physics ensemble – the so-called "low entrainment parameter" member – has a much higher climate sensitivity than other individual parameter perturbations. Here we show that the concentration of stratospheric water vapour in this member is over three times higher than observations, and, more importantly for climate sensitivity, increases significantly when climate warms. The large surface temperature response of this ensemble member is more consistent with stratospheric humidity change, rather than upper tropospheric clouds as has been previously suggested. The direct relationship between the bias in the control state (elevated stratospheric humidity) and the cause of the high climate sensitivity (a further increase in stratospheric humidity) lends further doubt as to the realism of this particular integration. This, together with other evidence, lowers the likelihood that the climate system's physical sensitivity is significantly higher than the likely upper range quoted in the Intergovernmental Panel on Climate Change's Fourth Assessment Report.


2020 ◽  
Author(s):  
Laura Stecher ◽  
Franziska Winterstein ◽  
Martin Dameris ◽  
Patrick Jöckel ◽  
Michael Ponater ◽  
...  

Abstract. In a previous study the quasi-instantaneous chemical impacts (rapid adjustments) of strongly enhanced methane (CH4) mixing ratios have been analyzed. However, to quantify the influence of the respective slow climate feedbacks on the chemical composition it is necessary to include the radiation driven temperature feedback. Therefore, we perform sensitivity simulations with doubled and fivefold present-day (year 2010) CH4 mixing ratios with the chemistry-climate model EMAC and include in a novel set-up a mixed layer ocean model to account for tropospheric warming. We find that the slow climate feedbacks counteract the reduction of the hydroxyl radical in the troposphere, which is caused by the strongly enhanced CH4 mixing ratios. Thereby also the resulting prolongation of the tropospheric CH4 lifetime is weakened compared to the quasi-instantaneous response considered previously. Changes in the stratospheric circulation evolve clearly with the warming of the troposphere. The Brewer-Dobson circulation strengthens, affecting the response of trace gases, such as ozone, water vapour and CH4 in the stratosphere, and also causing stratospheric temperature changes. In the middle and upper stratosphere, the increase of stratospheric water vapour is reduced with respect to the quasi-instantaneous response. Weaker increases of the hydroxyl radical cause the chemical depletion of CH4 to be less strongly enhanced and thus the in situ source of stratospheric water vapour as well. However, in the lower stratosphere water vapour increases more strongly when tropospheric warming is accounted for enlarging its overall radiative impact. The response of the stratospheric adjusted temperatures driven by slow climate feedbacks is dominated by these increases of stratospheric water vapour, as well as strongly decreased ozone mixing ratios above the tropical tropopause, which result from enhanced tropical upwelling. While rapid radiative adjustments from ozone and stratospheric water vapour make an essential contribution to the effective CH4 radiative forcing, the radiative impact of the respective slow feedbacks is rather moderate. In line with this, the climate sensitivity from CH4 changes in this chemistry-climate model setup is not significantly different from the climate sensitivity in carbon dioxide-driven simulations, provided that the CH4 effective radiative forcing includes the rapid adjustments from ozone and stratospheric water vapour changes.


2021 ◽  
Vol 21 (2) ◽  
pp. 731-754
Author(s):  
Laura Stecher ◽  
Franziska Winterstein ◽  
Martin Dameris ◽  
Patrick Jöckel ◽  
Michael Ponater ◽  
...  

Abstract. In a previous study the quasi-instantaneous chemical impacts (rapid adjustments) of strongly enhanced methane (CH4) mixing ratios have been analysed. However, to quantify the influence of the respective slow climate feedbacks on the chemical composition it is necessary to include the radiation-driven temperature feedback. Therefore, we perform sensitivity simulations with doubled and quintupled present-day (year 2010) CH4 mixing ratios with the chemistry–climate model EMAC (European Centre for Medium-Range Weather Forecasts, Hamburg version – Modular Earth Submodel System (ECHAM/MESSy) Atmospheric Chemistry) and include in a novel set-up a mixed-layer ocean model to account for tropospheric warming. Strong increases in CH4 lead to a reduction in the hydroxyl radical in the troposphere, thereby extending the CH4 lifetime. Slow climate feedbacks counteract this reduction in the hydroxyl radical through increases in tropospheric water vapour and ozone, thereby dampening the extension of CH4 lifetime in comparison with the quasi-instantaneous response. Changes in the stratospheric circulation evolve clearly with the warming of the troposphere. The Brewer–Dobson circulation strengthens, affecting the response of trace gases, such as ozone, water vapour and CH4 in the stratosphere, and also causing stratospheric temperature changes. In the middle and upper stratosphere, the increase in stratospheric water vapour is reduced with respect to the quasi-instantaneous response. We find that this difference cannot be explained by the response of the cold point and the associated water vapour entry values but by a weaker strengthening of the in situ source of water vapour through CH4 oxidation. However, in the lower stratosphere water vapour increases more strongly when tropospheric warming is accounted for, enlarging its overall radiative impact. The response of the stratosphere adjusted temperatures driven by slow climate feedbacks is dominated by these increases in stratospheric water vapour as well as strongly decreased ozone mixing ratios above the tropical tropopause, which result from enhanced tropical upwelling. While rapid radiative adjustments from ozone and stratospheric water vapour make an essential contribution to the effective CH4 radiative forcing, the radiative impact of the respective slow feedbacks is rather moderate. In line with this, the climate sensitivity from CH4 changes in this chemistry–climate model set-up is not significantly different from the climate sensitivity in carbon-dioxide-driven simulations, provided that the CH4 effective radiative forcing includes the rapid adjustments from ozone and stratospheric water vapour changes.


2015 ◽  
Vol 8 (7) ◽  
pp. 1943-1954 ◽  
Author(s):  
D. R. Feldman ◽  
W. D. Collins ◽  
J. L. Paige

Abstract. Top-of-atmosphere (TOA) spectrally resolved shortwave reflectances and long-wave radiances describe the response of the Earth's surface and atmosphere to feedback processes and human-induced forcings. In order to evaluate proposed long-duration spectral measurements, we have projected 21st Century changes from the Community Climate System Model (CCSM3.0) conducted for the Intergovernmental Panel on Climate Change (IPCC) A2 Emissions Scenario onto shortwave reflectance spectra from 300 to 2500 nm and long-wave radiance spectra from 2000 to 200 cm−1 at 8 nm and 1 cm−1 resolution, respectively. The radiative transfer calculations have been rigorously validated against published standards and produce complementary signals describing the climate system forcings and feedbacks. Additional demonstration experiments were performed with the Model for Interdisciplinary Research on Climate (MIROC5) and Hadley Centre Global Environment Model version 2 Earth System (HadGEM2-ES) models for the Representative Concentration Pathway 8.5 (RCP8.5) scenario. The calculations contain readily distinguishable signatures of low clouds, snow/ice, aerosols, temperature gradients, and water vapour distributions. The goal of this effort is to understand both how climate change alters reflected solar and emitted infrared spectra of the Earth and determine whether spectral measurements enhance our detection and attribution of climate change. This effort also presents a path forward to understand the characteristics of hyperspectral observational records needed to confront models and inline instrument simulation. Such simulation will enable a diverse set of comparisons between model results from coupled model intercomparisons and existing and proposed satellite instrument measurement systems.


2015 ◽  
Vol 15 (10) ◽  
pp. 5537-5555 ◽  
Author(s):  
R. Eichinger ◽  
P. Jöckel ◽  
S. Brinkop ◽  
M. Werner ◽  
S. Lossow

Abstract. This modelling study aims at an improved understanding of the processes that determine the water vapour budget in the stratosphere by means of the investigation of water isotope ratios. An additional (and separate from the actual) hydrological cycle has been introduced into the chemistry–climate model EMAC, including the water isotopologues HDO and H218O and their physical fractionation processes. Additionally an explicit computation of the contribution of methane oxidation to H2O and HDO has been incorporated. The model expansions allow detailed analyses of water vapour and its isotope ratio with respect to deuterium throughout the stratosphere and in the transition region to the troposphere. In order to assure the correct representation of the water isotopologues in the model's hydrological cycle, the expanded system has been evaluated in several steps. The physical fractionation effects have been evaluated by comparison of the simulated isotopic composition of precipitation with measurements from a ground-based network (GNIP) and with the results from the isotopologue-enabled general circulation model ECHAM5-wiso. The model's representation of the chemical HDO precursor CH3D in the stratosphere has been confirmed by a comparison with chemical transport models (1-D, CHEM2D) and measurements from radiosonde flights. Finally, the simulated stratospheric HDO and the isotopic composition of water vapour have been evaluated, with respect to retrievals from three different satellite instruments (MIPAS, ACE-FTS, SMR). Discrepancies in stratospheric water vapour isotope ratios between two of the three satellite retrievals can now partly be explained.


2017 ◽  
Vol 08 (02) ◽  
pp. 1750006 ◽  
Author(s):  
KEVIN DAYARATNA ◽  
ROSS McKITRICK ◽  
DAVID KREUTZER

Integrated Assessment Models (IAMs) require parameterization of both economic and climatic processes. The latter includes Equilibrium Climate Sensitivity (ECS), or the temperature response to doubling CO2 levels, and Ocean Heat Uptake (OHU) efficiency. ECS distributions in IAMs have been drawn from climate model runs that lack an empirical basis, and in Monte Carlo experiments may not be constrained to consistent OHU values. Empirical ECS estimates are now available, but have not yet been applied in IAMs. We incorporate a new estimate of the ECS distribution conditioned on observed OHU efficiency into two widely used IAMs. The resulting Social Cost of Carbon (SCC) estimates are much lower than those from models based on simulated ECS parameters. In the DICE model, the average SCC falls by approximately 40–50% depending on the discount rate, while in the FUND model the average SCC falls by over 80%. The span of estimates across discount rates also shrinks substantially.


2008 ◽  
Vol 9 (2) ◽  
pp. 292-299 ◽  
Author(s):  
Eleanor J. Burke ◽  
Simon J. Brown

Abstract The uncertainty in the projection of future drought occurrence was explored for four different drought indices using two model ensembles. The first ensemble expresses uncertainty in the parameter space of the third Hadley Centre climate model, and the second is a multimodel ensemble that additionally expresses structural uncertainty in the climate modeling process. The standardized precipitation index (SPI), the precipitation and potential evaporation anomaly (PPEA), the Palmer drought severity index (PDSI), and the soil moisture anomaly (SMA) were derived for both a single CO2 (1×CO2) and a double CO2 (2×CO2) climate. The change in moderate drought, defined by the 20th percentile of the relevant 1×CO2 distribution, was calculated. SPI, based solely on precipitation, shows little change in the proportion of the land surface in drought. All the other indices, which include a measure of the atmospheric demand for moisture, show a significant increase with an additional 5%–45% of the land surface in drought. There are large uncertainties in regional changes in drought. Regions where the precipitation decreases show a reproducible increase in drought across ensemble members and indices. In other regions the sign and magnitude of the change in drought is dependent on index definition and ensemble member, suggesting that the selection of appropriate drought indices is important for impact studies.


2016 ◽  
Author(s):  
Laura Revell ◽  
Andrea Stenke ◽  
Eugene Rozanov ◽  
William Ball ◽  
Stefan Lossow ◽  
...  

Abstract. Stratospheric water vapour (SWV) is an important component of the Earth's atmosphere as it affects both radiative balance and the chemistry of the atmosphere. Key processes driving changes in SWV through the 21st century include dehydration of air masses transiting the cold-point tropopause (CPT) and methane oxidation. Increasing surface temperatures may strengthen the Brewer-Dobson circulation, such that more methane is transported into the stratosphere where it can be oxidised to SWV. We use a chemistry-climate model to simulate changes in SWV through the 21st century following the four canonical Representative Concentration Pathways (RCPs). Furthermore, we quantify the contribution that methane oxidation makes to SWV following each of the RCPs. The methane contribution to SWV maximises in the upper stratosphere, however modelled SWV trends are found to be driven predominantly by warming of the CPT and strengthening of the Brewer-Dobson circulation rather than by increasing methane oxidation. SWV changes by −5 % to 60 % (depending on the location in the atmosphere and emissions scenario) and increases in the lower stratosphere in all RCPs through the 21st century. Because the lower stratosphere is where water vapour radiative forcing maximises, SWV's influence on surface climate is also expected to increase through the 21st century.


2014 ◽  
Vol 14 (17) ◽  
pp. 23807-23846 ◽  
Author(s):  
R. Eichinger ◽  
P. Jöckel ◽  
S. Brinkop ◽  
M. Werner ◽  
S. Lossow

Abstract. This modelling study aims on an improved understanding of the processes, that determine the water vapour budget in the stratosphere by means of the investigation of water isotope ratios. At first, a separate hydrological cycle has been introduced into the chemistry-climate model EMAC, including the water isotopologues HDO and H218O and their physical fractionation processes. Additionally an explicit computation of the contribution of methane oxidation to HDO has been incorporated. The model expansions allow detailed analyses of water vapour and its isotope ratio with respect to deuterium throughout the stratosphere and in the transition region to the troposphere. In order to assure the correct representation of the water isotopologues in the model's hydrological cycle, the expanded system has been evaluated in several steps. The physical fractionation effects have been evaluated by comparison of the simulated isotopic composition of precipitation with measurements from a ground-based network (GNIP) and with the results from the isotopologue-enabled general circulation model ECHAM5-wiso. The model's representation of the chemical HDO precursor CH3D in the stratosphere has been confirmed by a comparison with chemical transport models (CHEM1D, CHEM2D) and measurements from radiosonde flights. Finally, the simulated stratospheric HDO and the isotopic composition of water vapour have been evaluated, with respect to retrievals from three different satellite instruments (MIPAS, ACE-FTS, SMR). Discrepancies in stratospheric water vapour isotope ratios between two of the three satellite retrievals can now partly be explained.


2020 ◽  
Vol 16 (6) ◽  
pp. 2095-2123 ◽  
Author(s):  
Alan M. Haywood ◽  
Julia C. Tindall ◽  
Harry J. Dowsett ◽  
Aisling M. Dolan ◽  
Kevin M. Foley ◽  
...  

Abstract. The Pliocene epoch has great potential to improve our understanding of the long-term climatic and environmental consequences of an atmospheric CO2 concentration near ∼400 parts per million by volume. Here we present the large-scale features of Pliocene climate as simulated by a new ensemble of climate models of varying complexity and spatial resolution based on new reconstructions of boundary conditions (the Pliocene Model Intercomparison Project Phase 2; PlioMIP2). As a global annual average, modelled surface air temperatures increase by between 1.7 and 5.2 ∘C relative to the pre-industrial era with a multi-model mean value of 3.2 ∘C. Annual mean total precipitation rates increase by 7 % (range: 2 %–13 %). On average, surface air temperature (SAT) increases by 4.3 ∘C over land and 2.8 ∘C over the oceans. There is a clear pattern of polar amplification with warming polewards of 60∘ N and 60∘ S exceeding the global mean warming by a factor of 2.3. In the Atlantic and Pacific oceans, meridional temperature gradients are reduced, while tropical zonal gradients remain largely unchanged. There is a statistically significant relationship between a model's climate response associated with a doubling in CO2 (equilibrium climate sensitivity; ECS) and its simulated Pliocene surface temperature response. The mean ensemble Earth system response to a doubling of CO2 (including ice sheet feedbacks) is 67 % greater than ECS; this is larger than the increase of 47 % obtained from the PlioMIP1 ensemble. Proxy-derived estimates of Pliocene sea surface temperatures are used to assess model estimates of ECS and give an ECS range of 2.6–4.8 ∘C. This result is in general accord with the ECS range presented by previous Intergovernmental Panel on Climate Change (IPCC) Assessment Reports.


Sign in / Sign up

Export Citation Format

Share Document