scholarly journals Mixing state and compositional effects on CCN activity and droplet growth kinetics of size-resolved CCN in an urban environment

2011 ◽  
Vol 11 (12) ◽  
pp. 32723-32768 ◽  
Author(s):  
L. T. Padró ◽  
R. H. Moore ◽  
X. Zhang ◽  
N. Rastogi ◽  
R. J. Weber ◽  
...  

Abstract. Aerosol composition and mixing state near anthropogenic sources can be highly variable and can challenge predictions of cloud condensation nuclei (CCN). We present in-situ size-resolved CCN measurements to quantify this predictive uncertainty, which were carried out during the 2008 summertime August Mini Intensive Gas and Aerosol Study (AMIGAS) campaign in Atlanta, GA. Aerosol chemical composition was measured by two particle-into-liquid samplers measuring water-soluble inorganic ions and total water-soluble organic carbon. Size-resolved CCN data were collected using the Scanning Mobility CCN Analysis (SMCA) method and were used to obtain characteristic aerosol hygroscopicity distributions, whose breadth reflects the aerosol compositional variability and mixing state. We find that knowledge of aerosol mixing state is important for accurate predictions of CCN concentrations and that the influence of an externally-mixed, non-CCN-active aerosol fraction varies with size from 31% for particle diameters less than 40 nm to 93% for accumulation mode aerosol during the day. This is likely indicative of the interactions between biogenic and anthropogenic emissions which contribute to the formation and transformation of aerosols in this heterogeneous environment. Assuming size-dependent aerosol mixing state and size-invariant chemical composition decreased the average CCN concentration overprediction from greater than 50–200% to less than 20%. CCN activity was parameterized using a single hygroscopicity parameter, κ, which averaged 0.16 ± 0.07 for 80 nm particles and exhibited considerable variability (range: 0.03–0.48) throughout the study period.

2012 ◽  
Vol 12 (21) ◽  
pp. 10239-10255 ◽  
Author(s):  
L. T. Padró ◽  
R. H. Moore ◽  
X. Zhang ◽  
N. Rastogi ◽  
R. J. Weber ◽  
...  

Abstract. Aerosol composition and mixing state near anthropogenic sources can be highly variable and can challenge predictions of cloud condensation nuclei (CCN). The impacts of chemical composition on CCN activation kinetics is also an important, but largely unknown, aspect of cloud droplet formation. Towards this, we present in-situ size-resolved CCN measurements carried out during the 2008 summertime August Mini Intensive Gas and Aerosol Study (AMIGAS) campaign in Atlanta, GA. Aerosol chemical composition was measured by two particle-into-liquid samplers measuring water-soluble inorganic ions and total water-soluble organic carbon. Size-resolved CCN data were collected using the Scanning Mobility CCN Analysis (SMCA) method and were used to obtain characteristic aerosol hygroscopicity distributions, whose breadth reflects the aerosol compositional variability and mixing state. Knowledge of aerosol mixing state is important for accurate predictions of CCN concentrations and that the influence of an externally-mixed, CCN-active aerosol fraction varies with size from 31% for particle diameters less than 40 nm to 93% for accumulation mode aerosol during the day. Assuming size-dependent aerosol mixing state and size-invariant chemical composition decreases the average CCN concentration overprediction (for all but one mixing state and chemical composition scenario considered) from over 190–240% to less than 20%. CCN activity is parameterized using a single hygroscopicity parameter, κ, which averages to 0.16 ± 0.07 for 80 nm particles and exhibits considerable variability (from 0.03 to 0.48) throughout the study period. Particles in the 60–100 nm range exhibited similar hygroscopicity, with a κ range for 60 nm between 0.06–0.076 (mean of 0.18 ± 0.09). Smaller particles (40 nm) had on average greater κ, with a range of 0.20–0.92 (mean of 0.3 ± 0.12). Analysis of the droplet activation kinetics of the aerosol sampled suggests that most of the CCN activate as rapidly as calibration aerosol, suggesting that aerosol composition exhibits a minor (if any) impact on CCN activation kinetics.


2018 ◽  
Vol 18 (9) ◽  
pp. 6907-6921 ◽  
Author(s):  
Jingye Ren ◽  
Fang Zhang ◽  
Yuying Wang ◽  
Don Collins ◽  
Xinxin Fan ◽  
...  

Abstract. Understanding the impacts of aerosol chemical composition and mixing state on cloud condensation nuclei (CCN) activity in polluted areas is crucial for accurately predicting CCN number concentrations (NCCN). In this study, we predict NCCN under five assumed schemes of aerosol chemical composition and mixing state based on field measurements in Beijing during the winter of 2016. Our results show that the best closure is achieved with the assumption of size dependent chemical composition for which sulfate, nitrate, secondary organic aerosols, and aged black carbon are internally mixed with each other but externally mixed with primary organic aerosol and fresh black carbon (external–internal size-resolved, abbreviated as EI–SR scheme). The resulting ratios of predicted-to-measured NCCN (RCCN_p∕m) were 0.90 – 0.98 under both clean and polluted conditions. Assumption of an internal mixture and bulk chemical composition (INT–BK scheme) shows good closure with RCCN_p∕m of 1.0 –1.16 under clean conditions, implying that it is adequate for CCN prediction in continental clean regions. On polluted days, assuming the aerosol is internally mixed and has a chemical composition that is size dependent (INT–SR scheme) achieves better closure than the INT–BK scheme due to the heterogeneity and variation in particle composition at different sizes. The improved closure achieved using the EI–SR and INT–SR assumptions highlight the importance of measuring size-resolved chemical composition for CCN predictions in polluted regions. NCCN is significantly underestimated (with RCCN_p∕m of 0.66 – 0.75) when using the schemes of external mixtures with bulk (EXT–BK scheme) or size-resolved composition (EXT–SR scheme), implying that primary particles experience rapid aging and physical mixing processes in urban Beijing. However, our results show that the aerosol mixing state plays a minor role in CCN prediction when the κorg exceeds 0.1.


2020 ◽  
Author(s):  
Lady Mateus ◽  
Kelly Burbano ◽  
Rodrigo Jimenez ◽  
Nestor Rojas

<p>Elemental and Organic Carbon (EC/OC) make up a significant fraction of particulate matter emitted by combustion process and water-soluble ions provide an important information about the origin of ambient aerosols. The sized-segregated chemical characterization of ambient aerosol is useful to understand its sources and formation mechanisms and complements well the information obtained from the bulk aerosol composition. Previous studies in Bogota determined the chemical composition and source contribution of PM<sub>10</sub> in Bogota, as well as the temporal and spatial variability of polycyclic aromatic hydrocarbons (PAH) in the same city. However, the size-segregated chemical composition of ambient particles has not been studied in Colombian cities. This work aims to better understand the variability of size-segregated PM chemical composition in Bogota, one of the main Latin American megacities. Eight sets of samples were collected using an Andersen 8-stage cascade impactor in the southwest area of the city, where the highest concentrations of PM<sub>2.5</sub> usually occur, over two periods in 2018. The concentration of OC/EC and ions (ammonium, sodium, potassium, magnesium, calcium, chloride, nitrate, sulfate and oxalate) were quantified. The average PM<sub>1</sub> concentration was 30.3 mg/m<sup>3</sup> (75% of PM<sub>2.5</sub>). The mass size distribution was bimodal, with a coarse mode between 5.8 and 4.7 mm aerodynamic diameter and an accumulation mode between 0.43 and 0.65mm. Most of the mass (75%) of PM<sub>1</sub> consists of carbonaceous species, being EC the main constituent. The main inorganic ions in PM<sub>1</sub> were sulfate, nitrate and ammonium. These and other results from this work will contribute to the validation of models within the PAPILA (Prediction of Air Pollution In Latin America and the Caribbean) project, funded by the EU MSCA action for research and innovation staff exchange (GA 777544).</p>


2013 ◽  
Vol 13 (12) ◽  
pp. 32353-32389 ◽  
Author(s):  
G. P. Almeida ◽  
J. Brito ◽  
C. A. Morales ◽  
M. F. Andrade ◽  
P. Artaxo

Abstract. Measurements of cloud condensation nuclei (CCN), aerosol size distribution and non-refractory chemical composition were performed from 16 to 31 October 2012 in the São Paulo Metropolitan Area (SPMA), Brazil. CCN measurements were performed at 0.2%, 0.4%, 0.6%, 0.8% and 1.0% water supersaturation and were subsequently compared with Köhler theory, considering the chemical composition. Real-time chemical composition has been obtained deploying for the first time in SPMA an Aerosol Chemical Ionization Monitor (ACSM). CCN closure analyses were performed considering internal mixture. Average aerosol composition during the studied period yielded 4.81 ± 3.05, 3.26 ± 2.10, 0.30 ± 0.27, 0.52 ± 0.32, 0.37 ± 0.21 and 0.04 ± 0.04 μg m−3 for organics, BC, NH4, SO4, NO3 and Cl, respectively. Particle number concentration was 12 813 ± 5350 cm−3, being a large fraction in the nucleation mode. CCN concentrations were on average 1090 ± 328 cm−3 and 3570 ± 1695 cm−3 at SS = 0.2% and SS = 1.0%, respectively. Results show an increase in aerosol hygroscopicity in the afternoon as a result of aerosol photochemical processing, leading to an enhancement of both organic and inorganic secondary aerosols in the atmosphere, as well as an increase in aerosol average diameter. Considering the bulk composition alone, CCN concentrations were substantially overpredicted (29.6 ± 45.1% at 0.2% supersaturation and 57.3 ± 30.0% at 1.0% supersaturation). Overall, the impact of composition on the calculated NCCN decreases with decreasing supersaturation, partially because using bulk composition introduces less bias for large diameters and lower critical supersaturations. Results suggest that the consideration of only inorganic fraction improves the calculated NCCN. Introducing a size-dependent chemical composition based on filter measurements from previous campaigns has considerably improved simulated values for NCCN (average overprediction error 3.0 ± 33.4% at 0.20% supersaturation and average under prediction error 2.4 ± 20.5% at 1.0% supersaturation). This study provides the first insight on aerosol real-time composition and hygroscopicity on a~site strongly impacted by emissions of a unique vehicular fleet due to the extensive biofuel usage.


2018 ◽  
Vol 75 (2) ◽  
pp. 451-467 ◽  
Author(s):  
Gaetano Sardina ◽  
Stéphane Poulain ◽  
Luca Brandt ◽  
Rodrigo Caballero

Abstract The authors study the condensational growth of cloud droplets in homogeneous isotropic turbulence by means of a large-eddy simulation (LES) approach. The authors investigate the role of a mean updraft velocity and of the chemical composition of the cloud condensation nuclei (CCN) on droplet growth. The results show that a mean constant updraft velocity superimposed onto a turbulent field reduces the broadening of the droplet size spectra induced by the turbulent fluctuations alone. Extending the authors’ previous results regarding stochastic condensation, the authors introduce a new theoretical estimation of the droplet size spectrum broadening that accounts for this updraft velocity effect. A similar reduction of the spectra broadening is observed when the droplets reach their critical size, which depends on the chemical composition of CCN. The analysis of the square of the droplet radius distribution, proportional to the droplet surface, shows that for large particles the distribution is purely Gaussian, while it becomes strongly non-Gaussian for smaller particles, with the left tail characterized by a peak around the haze activation radius. This kind of distribution can significantly affect the later stages of the droplet growth involving turbulent collisions, since the collision probability kernel depends on the droplet size, implying the need for new specific closure models to capture this effect.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 847
Author(s):  
Hao Xiao ◽  
Hua-Yun Xiao ◽  
Zhong-Yi Zhang ◽  
Neng-Jian Zheng ◽  
Qin-kai Li ◽  
...  

Sulfate, nitrate and ammonium (SNA) are the dominant components of water-soluble ions (WSIs) in PM2.5, which are of great significance for understanding the sources and transformation mechanisms of PM2.5. In this study, daily PM2.5 samples were collected from September 2017 to August 2018 within the Guiyang urban area and the concentrations of the major WSIs in the PM2.5 samples were characterized. The results showed that the average concentration of SNA (SO42−, NO3−, NH4+) was 15.01 ± 9.35 μg m−3, accounting for 81.05% (48.71–93.76%) of the total WSIs and 45.33% (14.25–82.43%) of the PM2.5 and their possible chemical composition in PM2.5 was (NH4)2SO4 and NH4NO3. The highest SOR (sulfur oxidation ratio) was found in summer, which was mainly due to the higher temperature and O3 concentrations, while the lowest NOR (nitrogen oxidation ratio) found in summer may ascribe to the volatilization of nitrates being accelerated at higher temperature. Furthermore, the nitrate formation was more obvious in NH4+-rich environments so reducing NH3 emissions could effectively control the formation of nitrate. The results of the trajectory cluster analysis suggested that air pollutants can be easily enriched over short air mass trajectories from local emission sources, affecting the chemical composition of PM2.5.


Author(s):  
Xiaoyao Ma ◽  
Zhenghui Xiao ◽  
Lizhi He ◽  
Zongbo Shi ◽  
Yunjiang Cao ◽  
...  

Xiangtan, South China, is characterized by year-round high relative humidity and very low wind speeds. To assess levels of PM2.5, daily samples were collected from 2016 to 2017 at two urban sites. The mass concentrations of PM2.5 were in the range of 30–217 µg/m3, with the highest concentrations in winter and the lowest in spring. Major water-soluble ions (WSIIs) and total carbon (TC) accounted for 58–59% and 21–24% of the PM2.5 mass, respectively. Secondary inorganic ions (SO42−, NO3−, and NH4+) dominated the WSIIs and accounted for 73% and 74% at the two sites. The concentrations of K, Fe, Al, Sb, Ca, Zn, Mg, Pb, Ba, As, and Mn in the PM2.5 at the two sites were higher than 40 ng/m3, and decreased in the order of winter > autumn > spring. Enrichment factor analysis indicates that Co, Cu, Zn, As, Se, Cd, Sb, Tl, and Pb mainly originates from anthropogenic sources. Source apportionment analysis showed that secondary inorganic aerosols, vehicle exhaust, coal combustion and secondary aerosols, fugitive dust, industrial emissions, steel industry are the major sources of PM2.5, contributing 25–27%, 21–22%, 19–21%, 16–18%, 6–9%, and 8–9% to PM2.5 mass.


2019 ◽  
Author(s):  
Ye Tao ◽  
Jennifer G. Murphy

Abstract. Aerosol pH is difficult to measure directly but can be calculated if the chemical composition is known with sufficient accuracy and precision to calculate the aerosol water content and the H+ concentration through ion balance. In practical terms, simultaneous measurements of at least one semi-volatile constitute, e.g. NH3 or HNO3, are required to provide a constraint on the calculation of pH. Long-term records of aerosol pH are scarce due to the limited monitoring of NH3 in conjunction with PM2.5. In this study, 10-year (2007–2016) records of pH of PM2.5 at six eastern Canadian sites were calculated using the E-AIM II model with the input of gaseous NH3, gaseous HNO3 and major water-soluble inorganic ions in PM2.5 provided by Canada's National Air Pollution Surveillance (NAPS) Program. Clear seasonal cycles of aerosol pH were found with lower pH (~2) in summer and higher pH (~3) in winter consistently across all six sites, while the day-to-day variations of aerosol pH were higher in winter compared to summer. Tests of the sensitivity of aerosol pH to meteorological parameters demonstrate that the changes in ambient temperature largely drive the seasonal cycle of aerosol pH. The sensitivity of pH to chemical composition shows that pH has different responses to the changes in chemical composition in different seasons. During summertime, aerosol pH was mainly determined by temperature with limited impact from changes in NHx or sulfate concentrations. However, in wintertime, both meteorological parameters and chemical composition contribute to the variations in aerosol pH, resulting in the larger variation during wintertime. This study reveals that the sensitivity of aerosol pH to chemical composition is distinctly different under different meteorological conditions and needs to be carefully examined for any particular region.


2018 ◽  
Vol 20 (9) ◽  
pp. 6591-6597
Author(s):  
A. E. Vizenor ◽  
A. A. Asa-Awuku

Cloud condensation nuclei (CCN) activity and the hygroscopicity of secondary organic aerosol (SOA) depends on the particle size and composition, explicitly, the thermodynamic properties of the aerosol solute and subsequent interactions with water. The gas-to-aerosol phase partitioning is critical for aerosol composition and thus gas-phase vapors and kinetics can play an important role in the CCN activity of SOA.


Sign in / Sign up

Export Citation Format

Share Document