scholarly journals Tropospheric aerosol scattering and absorption over Central Europe: a closure study for the dry particle state

2013 ◽  
Vol 13 (10) ◽  
pp. 27811-27854 ◽  
Author(s):  
N. Ma ◽  
W. Birmili ◽  
T. Müller ◽  
T. Tuch ◽  
Y. F. Cheng ◽  
...  

Abstract. This work analyses optical properties of the dry tropospheric aerosol measured at the regional GAW observation site Melpitz in East Germany. For a continuous observation period between 2007 and 2010, we provide representative values of the dry-state scattering coefficient, the hemispheric backscattering coefficient, the absorption coefficient, single scattering albedo, and the Ångström exponent. Besides the direct measurement, the aerosol scattering coefficient was alternatively computed from experimental particle number size distributions using a Mie code. Within pre-defined limits, a closure could be achieved with the direct measurement. The achievement of closure implies that such calculations can be used as a high-level quality control measure for data sets involving multiple instrumentation. All dry optical properties showed significant annual variations, which were attributed to corresponding variations in the regional emission fluxes, the intensity of secondary particle formation, and the mixed layer height. Air mass classification showed that atmospheric stability is a major factor influencing the dry aerosol properties at the GAW station. In the cold season, temperature inversions limit the volume available for atmospheric mixing, so that the aerosol optical properties near the ground proved quite sensitive to the geographical origin of the air mass. In the warm season, when the atmosphere is usually well-mixed during day-time, considerably less variability was observed for the optical properties between different air masses. This work provides, on the basis of quality-checked in-situ measurements, a first step towards a climatological assessment of direct aerosol radiative forcing in the region under study.

2014 ◽  
Vol 14 (12) ◽  
pp. 6241-6259 ◽  
Author(s):  
N. Ma ◽  
W. Birmili ◽  
T. Müller ◽  
T. Tuch ◽  
Y. F. Cheng ◽  
...  

Abstract. This work analyses optical properties of the dry tropospheric aerosol measured at the regional Global Atmosphere Watch (GAW) observation site Melpitz in East Germany. For a continuous observation period between 2007 and 2010, we provide representative values of the dry-state scattering coefficient, hemispheric backscattering coefficient, absorption coefficient, single scattering albedo, and scattering Ångström exponent. Besides the direct measurement, the aerosol scattering coefficient was alternatively computed from experimental particle number size distributions using a Mie model. Within pre-defined limits, a closure could be achieved with the direct measurement. The achievement of closure implies that such calculations can be used as a high-level quality control measure for data sets involving multiple instrumentation. All dry-state optical properties show pronounced annual and diurnal variations, which are attributed to the corresponding variations in the regional emission fluxes, the intensity of secondary particle formation, and the mixing layer height. Air mass classification shows that atmospheric stability is a major factor influencing the dry aerosol properties at the GAW station. In the cold season, temperature inversions limit the volume available for atmospheric mixing, so that the dry-state aerosol optical properties near the ground proved quite sensitive to the geographical origin of the air mass. In the warm season, when the atmosphere is usually well-mixed during daytime, considerably less variability was observed for the optical properties between different air masses. This work provides, on the basis of quality-checked in situ measurements, a first step towards a climatological assessment of direct aerosol radiative forcing in the region under study.


2021 ◽  
Vol 14 (7) ◽  
pp. 4879-4891
Author(s):  
Jie Qiu ◽  
Wangshu Tan ◽  
Gang Zhao ◽  
Yingli Yu ◽  
Chunsheng Zhao

Abstract. The aerosol scattering coefficient is an essential parameter for estimating aerosol direct radiative forcing and can be measured by nephelometers. Nephelometers are problematic due to small errors of nonideal Lambetian light source and angle truncation. Hence, the observed raw scattering coefficient data need to be corrected. In this study, based on the random forest machine learning model and taking Aurora 3000 as an example, we have proposed a new method to correct the scattering coefficient measurements of a three-wavelength nephelometer under different relative humidity conditions. The result shows that the empirical corrected values match Mie-calculation values very well at all three wavelengths and under all of the measured relative humidity conditions, with more than 85 % of the corrected values having less than 2 % error. The correction method obtains a scattering coefficient with high accuracy and there is no need for additional observation data.


2009 ◽  
Vol 9 (22) ◽  
pp. 9059-9081 ◽  
Author(s):  
A. Hoffmann ◽  
C. Ritter ◽  
M. Stock ◽  
M. Shiobara ◽  
A. Lampert ◽  
...  

Abstract. During the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) in March and April 2007, measurements obtained at the AWIPEV Arctic Research Base in Ny-Ålesund, Spitsbergen at 78.9° N, 11.9° E (operated by the Alfred Wegener Institute for Polar and Marine Research – AWI and the Institut polaire français Paul-Emile Victor – IPEV), supported the airborne campaign. This included lidar data from the Koldewey Aerosol Raman Lidar (KARL) and the Micro Pulse Lidar (MPL), located in the atmospheric observatory as well as photometer data and the daily launched radiosonde. The MPL features nearly continuous measurements; the KARL was switched on whenever weather conditions allowed observations (145 h in 61 days). From 1 March to 30 April, 71 meteorological balloon soundings were performed and compared with the concurrent MPL measurements; photometer measurements are available from 18 March. For the KARL data, a statistical overview of particle detection based on their optical properties backscatter ratio and volume depolarization can be given. The altitudes of the occurrence of the named features (subvisible and visible ice and water as well as mixed-phase clouds, aerosol layers) as well as their dependence on different air mass origins are analyzed. Although the spring 2007 was characterized by rather clean conditions, diverse case studies of cloud and aerosol occurrence during March and April 2007 are presented in more detail, including temporal development and main optical properties as depolarization, backscatter and extinction coefficients. Links between air mass origins and optical properties can be presumed but need further evidence.


2017 ◽  
Vol 17 (2) ◽  
pp. 1143-1160 ◽  
Author(s):  
Bingliang Zhuang ◽  
Tijian Wang ◽  
Jane Liu ◽  
Shu Li ◽  
Min Xie ◽  
...  

Abstract. Observational studies of aerosol optical properties are useful for reducing uncertainties in estimations of aerosol radiative forcing and forecasting visibility. In this study, the observed near-surface aerosol optical properties in urban Nanjing are analysed from March 2014 to February 2016. Results show that near-surface urban aerosols in Nanjing are mainly from local emissions and the surrounding regions. They have lower loadings but are more scattering than aerosols in most cities in China. The annual mean aerosol extinction coefficient (EC), single-scattering albedo (SSA) and asymmetry parameter (ASP) at 550 nm are 381.96 Mm−1, 0.9 and 0.57, respectively. The aerosol absorption coefficient (AAC) is about 1 order of magnitude smaller than its scattering coefficient (SC). However, the absorbing aerosol has a larger Ångström exponent (AAE) value, 1.58 at 470∕660 nm, about 0.2 larger than the scattering aerosols (SAE). All the aerosol optical properties follow a near-unimodal pattern, and their values are mostly concentrated around their averages, accounting for more than 60 % of the total samplings. Additionally, they have substantial seasonality and diurnal variations. High levels of SC and AAC all appear in winter due to higher aerosol and trace gas emissions. AAE (ASP) is the smallest (largest) in summer, possibly because of high relative humidity (RH) which also causes considerably larger SC and smaller SAE, although intensive gas-to-particle transformation could produce a large number of finer scattering aerosols in this season. Seasonality of EC is different from the columnar aerosol optical depth. Larger AACs appear during the rush hours of the day while SC and back-scattering coefficient (Bsp) only peak in the early morning. Aerosols are fresher in the daytime than at night-time, leading to their larger Ångström exponent and smaller ASP. Different temporal variations between AAC and SC cause the aerosols to be more absorbing (smaller SSA) in autumn, winter and around rush hours. ASP has a good quasi-log-normal growth trend with increasing SC when RH is below 60 %. The correlation between AAC and SC at the site is close but a little smaller than that in suburban Nanjing in spring. Atmospheric visibility decreases exponentially with increasing EC or SC, more sharply in spring and summer, and it could be further deteriorated with increasing SSA and ASP.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 322 ◽  
Author(s):  
Miao Zhang ◽  
Jing Liu ◽  
Muhammad Bilal ◽  
Chun Zhang ◽  
Majid Nazeer ◽  
...  

Haze is an atmospheric phenomenon in which different types of particulates obscure the sky, and hence affect almost all human activities. Over a couple of recent decades, China has witnessed increasingly worse air quality as well as atmospheric haziness in its cities. There are various haze contributing factors including the rapid industrialization, excessive biomass burning, and an increase in the number of vehicles. This study proposes a methodology based on the aerosols scattering and absorption properties, to predict the likelihood of an episode of hazy days. This case study employs the aerosol optical properties data from integrated nephelometer and aethalometer sensors from December 2009 to September 2014 over Wuhan. The role and contribution of each aerosol optical parameter (e.g., aerosol scattering and absorption coefficients, single scattering albedo, scattering, and absorption Ångström exponents, backscatter ratio, and asymmetry factor) in distinguishing haze and haze-free conditions has been quantitatively determined based on a machine learning approach. Each aerosol optical parameter was classified independently by the support vector machine (SVM) algorithm, and the aerosol scattering (85.37%) and absorption (74.53%) coefficients were found to be primary potential indicators. Through the Kolmogorov-Smirnov test and traditional statistical analysis, the aerosol scattering and absorption coefficients were then verified as important indicators in distinguishing haze and haze-free days. Finally, through a probability density diagram and frequency histogram, we propose a simple quantitative standard to distinguish between haze and haze-free conditions based on the aerosol scattering coefficient and absorption coefficient in Wuhan City. The accuracy of the standard was determined to be 81.49% after testing, which indicates an accurate result. An error in aerosol optical properties may lead to an error in the calculation of aerosol radiative forcing, the earth’s energy budget, and climate prediction. Therefore, understanding of the aerosol properties during haze-free and haze-days will help policymakers to make new policies to control urban pollution and their effects on human health.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2617 ◽  
Author(s):  
Krzysztof M. Markowicz ◽  
Michał T. Chiliński

The aerosol scattering coefficient and Ångström exponent (AE) are important parameters in the understanding of aerosol optical properties and aerosol direct effect. These parameters are usually measured by a nephelometer network which is under-represented geographically; however, a rapid growth of air-pollution monitoring, using low-cost particle sensors, may extend observation networks. This paper presents the results of co-located measurements of aerosol optical properties, such as the aerosol scattering coefficient and the scattering AE, using low-cost sensors and using a scientific-grade polar Aurora 4000 nephelometer. A high Pearson correlation coefficient (0.94–0.96) between the low-cost particulate matter (PM) mass concentration and the aerosol scattering coefficient was found. For the PM10 mass concentration, the aerosol scattering coefficient relation is linear for the Dfrobot SEN0177 sensor and non-linear for the Alphasense OPC-N2 device. After regression analyses, both low-cost instruments provided the aerosol scattering coefficient with a similar mean square error difference (RMSE) of about 20 Mm−1, which corresponds to about 27% of the mean aerosol scattering coefficient. The relative uncertainty is independent of the pollution level. In addition, the ratio of aerosol number concentration between different bins showed a significant statistical (95% of confidence level) correlation with the scattering AE. For the SEN0177, the ratio of the particle number in bin 1 (radius of 0.15–0.25 µm) to bin 4 (radius of 1.25–2.5 µm) was a linear function of the scattering AE, with a Pearson correlation coefficient of 0.74. In the case of OPC-N2, the best correlation (r = 0.66) was found for the ratio between bin 1 (radius of 0.19–0.27 µm) and bin 2 (radius of 0.27–0.39 µm). Comparisons of an estimated scattering AE from a low-cost sensor with Aurora 4000 are given with the RMSE of 0.23–0.24, which corresponds to 16–19%. In addition, a three-year (2016–2019) observation by SEN0177 indicates that this sensor can be used to determine an annual cycle as well as a short-term variability.


2020 ◽  
Author(s):  
Wenyuan Chang ◽  
Ying Zhang ◽  
Zhengqiang Li ◽  
Jie Chen ◽  
Kaitao Li

Abstract. The Gridpoint Statistical Interpolation data assimilation (DA) system was developed for the four-size bin sectional Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) aerosol mechanism in the Weather Research and Forecasting-Chemistry (WRF-Chem) model. The forward and adjoint operators for the aerosol optical depth (AOD) analysis were derived from WRF-Chem aerosol optical code. We applied three-dimensional variational DA to assimilate the multi-wavelength AOD, ambient aerosol scattering coefficient, and aerosol absorption coefficient, measured by the sun-sky photometer, nephelometer, and aethalometer, respectively. These were undertaken during a dust observation field campaign at Kashi in northwestern China in April 2019. The results showed that the DA analyses decreased the low biases in the model aerosols; however, it had had some deficiencies. Assimilating the surface particle concentration increased the coarse particles in the dust episodes, but AOD, and the coefficients for aerosol scattering and absorption, were still lower than observed values. Assimilating aerosol scattering coefficient separately from AOD improved the two optical quantities. However, it caused an overestimation of the particle concentrations at the surface. Assimilating the aerosol absorption coefficient yielded the highest positive bias in the surface particle concentration, aerosol scattering coefficient, and AOD. The positive biases in the DA analysis were caused by the forward operator underestimating particle scattering and absorption efficiency. As a compensation, the DA system increased particle concentrations excessively so as to fit the observed optical values. The best overall improvements were obtained from the simultaneous assimilation of the surface particle concentration and AOD. The assimilation did not substantially change the aerosol chemical fractions. After DA, the clear-sky aerosol radiative forcing at Kashi was −10.5 W m−2 at the top of the atmosphere, which was 46 % higher than the background radiative forcing value.


2009 ◽  
Vol 9 (4) ◽  
pp. 15453-15510 ◽  
Author(s):  
A. Hoffmann ◽  
C. Ritter ◽  
M. Stock ◽  
M. Shiobara ◽  
A. Lampert ◽  
...  

Abstract. During the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) in March and April 2007, measurements obtained at the AWIPEV Research station in Ny-Ålesund, Spitsbergen (operated by the Alfred-Wegener-Institute for Polar and Marine Research and the Institut polaire français Paul-Emile Victor), supported the airborne campaign. This included Lidar data from the Koldewey Aerosol Raman Lidar (KARL) and the Micro Pulse Lidar (MPL), located in the atmospheric observatory as well as photometer data and the daily launched radiosonde. The MPL features nearly continuous measurements; the KARL was switched on whenever weather conditions allowed observations (145 h in 61 days). From 1 March to 30 April, 71 meteorological balloon soundings were performed and compared with the corresponding MPL measurements; photometer measurements are available from 18 March. For the KARL data, a statistical overview based on the optical properties backscatter ratio and volume depolarization can be given. The altitudes of the occurrence of the named features (subvisible and visible ice and water as well as mixed-phase clouds, aerosol layers) as well as their dependence on different air mass origins are analyzed. Although the spring 2007 was characterized by rather clean conditions, diverse case studies of cloud and aerosol occurrence during March and April 2007 are presented in more detail, including temporal development and main optical properties as backscatter, depolarization and extinction coefficients. Links between air mass origins and optical properties can be presumed but need further evidence.


2021 ◽  
Author(s):  
Jie Qiu ◽  
Wangshu Tan ◽  
Gang Zhao ◽  
Yingli Yu ◽  
Chunsheng Zhao

Abstract. The aerosol scattering coefficient is a significant parameter for estimating aerosol direct radiative forcing, which can be measured by nephelometers. Currently, nephelometers have the problem of non-ideal Lambertian light source and angle truncation. Hence, the observed raw scattering coefficient data need to be corrected. In this study, based on the random forest machine learning model, we have proposed a new method to correct the scattering coefficient measurements of a three-wavelength nephelometer, Aurora 3000, under different relative humidity conditions. The result shows that the empirical corrected values match Mie-calculation values very well at all the three wavelengths and under all the measured relative humidity conditions, with more than 85 % of the corrected values in error by less than 2 %. The correction method is valid to obtain scattering coefficient with high accuracy and there is no need for additional observation data.


2021 ◽  
Vol 21 (6) ◽  
pp. 4403-4430
Author(s):  
Wenyuan Chang ◽  
Ying Zhang ◽  
Zhengqiang Li ◽  
Jie Chen ◽  
Kaitao Li

Abstract. The Gridpoint Statistical Interpolation data assimilation (DA) system was developed for the four size bin sectional Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) aerosol mechanism in the Weather Research and Forecasting-Chemistry (WRF-Chem) model. The forward and tangent linear operators for the aerosol optical depth (AOD) analysis were derived from WRF-Chem aerosol optical code. We applied three-dimensional variational DA to assimilate the multi-wavelength AOD, ambient aerosol scattering coefficient, and aerosol absorption coefficient, measured by the sun–sky photometer, nephelometer, and aethalometer, respectively. These measurements were undertaken during a dust observation field campaign at Kashi in northwestern China in April 2019. The results showed that the DA analyses decreased the model aerosols' low biases; however, it had some deficiencies. Assimilating the surface particle concentration increased the coarse particles in the dust episodes, but AOD and the coefficients for aerosol scattering and absorption were still lower than those observed. Assimilating aerosol scattering coefficient separately from AOD improved the two optical quantities. However, it caused an overestimation of the particle concentrations at the surface. Assimilating the aerosol absorption coefficient yielded the highest positive bias in the surface particle concentration, aerosol scattering coefficient, and AOD. The positive biases in the DA analysis were caused by the forward operator underestimating aerosol mass scattering and absorption efficiency. As compensation, the DA system increased particle concentrations excessively to fit the observed optical values. The best overall improvements were obtained from the simultaneous assimilation of the surface particle concentration and AOD. The assimilation did not substantially change the aerosol chemical fractions. After DA, the clear-sky aerosol radiative forcing at Kashi was −10.4 W m−2 at the top of the atmosphere, which was 55 % higher than the radiative forcing value before DA.


Sign in / Sign up

Export Citation Format

Share Document