scholarly journals A naming convention for atmospheric organic aerosol

2013 ◽  
Vol 13 (11) ◽  
pp. 29983-30011 ◽  
Author(s):  
B. N. Murphy ◽  
N. M. Donahue ◽  
A. L. Robinson ◽  
S. N. Pandis

Abstract. We present a naming convention for classifying organic aerosol (OA) components relevant to laboratory studies, ambient observations and models. The challenge of developing a unified, systematic naming system is formidable, due to the wealth of chemical species involved in atmospheric OA, the distribution of these species between multiple simultaneously occurring phases, the large number of possible formation pathways, the growing diversity of measurement techniques available, and the numerous contexts in which OA is discussed. We propose such a system based on the volatility basis set approach that lumps organic compounds by similar effective saturation concentration. The volatility classes included in this convention (extremely low volatility, low volatility, semivolatile, intermediate volatility, and volatile), combined with more commonly used terms (e.g. primary and secondary OA, biomass burning OA, etc.) are able to describe and distinguish between several different routes of OA formation in the atmosphere, making them useful for communicating model, laboratory, and field results. Also useful is the addition of a suffix representing the volatility of the OA mass or its precursor during emission. This helps connect the current, dynamic view of OA phenomenology with the traditional, static one. Connections between the terms proposed here and observational techniques in the field, including dilution sampling, aerosol mass spectrometry, etc., are also discussed.

2016 ◽  
Vol 16 (4) ◽  
pp. 2013-2023 ◽  
Author(s):  
Andrea Paciga ◽  
Eleni Karnezi ◽  
Evangelia Kostenidou ◽  
Lea Hildebrandt ◽  
Magda Psichoudaki ◽  
...  

Abstract. Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar volatility distributions for the summer and winter campaigns with half of the material in the saturation concentration bin of 10 µg m−3 and another 35–40 % consisting of low and extremely low volatility organic compounds (LVOCs with effective saturation concentrations C* of 10−3–0.1 µg m−3 and ELVOCs C* less or equal than 10−4 µg m−3, respectively). The winter cooking OA (COA) was more than an order of magnitude less volatile than the summer COA. The low-volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest volatility of all the derived factors and consisted almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile organic components (SVOCs with C* in the 1–100 µg m−3 range) and LVOCs. The oxygenated OA (OOA) factor in winter consisted of SVOCs (45 %), LVOCs (25 %) and ELVOCs (30 %). The volatility of marine OA (MOA) was higher than that of the other factors containing around 60 % SVOCs. The biomass burning OA (BBOA) factor contained components with a wide range of volatilities with significant contributions from both SVOCs (50 %) and LVOCs (30 %). Finally, combining the bulk average O : C ratios and volatility distributions of the various factors, our results are placed into the two-dimensional volatility basis set (2D-VBS) framework. The OA factors cover a broad spectrum of volatilities with no direct link between the average volatility and average O : C of the OA components.


2010 ◽  
Vol 10 (10) ◽  
pp. 4625-4641 ◽  
Author(s):  
N. L. Ng ◽  
M. R. Canagaratna ◽  
Q. Zhang ◽  
J. L. Jimenez ◽  
J. Tian ◽  
...  

Abstract. In this study we compile and present results from the factor analysis of 43 Aerosol Mass Spectrometer (AMS) datasets (27 of the datasets are reanalyzed in this work). The components from all sites, when taken together, provide a holistic overview of Northern Hemisphere organic aerosol (OA) and its evolution in the atmosphere. At most sites, the OA can be separated into oxygenated OA (OOA), hydrocarbon-like OA (HOA), and sometimes other components such as biomass burning OA (BBOA). We focus on the OOA components in this work. In many analyses, the OOA can be further deconvolved into low-volatility OOA (LV-OOA) and semi-volatile OOA (SV-OOA). Differences in the mass spectra of these components are characterized in terms of the two main ions m/z 44 (CO2+) and m/z 43 (mostly C2H3O+), which are used to develop a new mass spectral diagnostic for following the aging of OA components in the atmosphere. The LV-OOA component spectra have higher f44 (ratio of m/z 44 to total signal in the component mass spectrum) and lower f43 (ratio of m/z 43 to total signal in the component mass spectrum) than SV-OOA. A wide range of f44 and O:C ratios are observed for both LV-OOA (0.17±0.04, 0.73±0.14) and SV-OOA (0.07±0.04, 0.35±0.14) components, reflecting the fact that there is a continuum of OOA properties in ambient aerosol. The OOA components (OOA, LV-OOA, and SV-OOA) from all sites cluster within a well-defined triangular region in the f44 vs. f43 space, which can be used as a standardized means for comparing and characterizing any OOA components (laboratory or ambient) observed with the AMS. Examination of the OOA components in this triangular space indicates that OOA component spectra become increasingly similar to each other and to fulvic acid and HULIS sample spectra as f44 (a surrogate for O:C and an indicator of photochemical aging) increases. This indicates that ambient OA converges towards highly aged LV-OOA with atmospheric oxidation. The common features of the transformation between SV-OOA and LV-OOA at multiple sites potentially enable a simplified description of the oxidation of OA in the atmosphere. Comparison of laboratory SOA data with ambient OOA indicates that laboratory SOA are more similar to SV-OOA and rarely become as oxidized as ambient LV-OOA, likely due to the higher loadings employed in the experiments and/or limited oxidant exposure in most chamber experiments.


2011 ◽  
Vol 45 (15) ◽  
pp. 6329-6335 ◽  
Author(s):  
Lea Hildebrandt ◽  
Kaytlin M. Henry ◽  
Jesse H. Kroll ◽  
Douglas R. Worsnop ◽  
Spyros N. Pandis ◽  
...  

2018 ◽  
Vol 18 (9) ◽  
pp. 6171-6186 ◽  
Author(s):  
Penglin Ye ◽  
Yunliang Zhao ◽  
Wayne K. Chuang ◽  
Allen L. Robinson ◽  
Neil M. Donahue

Abstract. We have investigated the production of secondary organic aerosol (SOA) from pinanediol (PD), a precursor chosen as a semi-volatile surrogate for first-generation oxidation products of monoterpenes. Observations at the CLOUD facility at CERN have shown that oxidation of organic compounds such as PD can be an important contributor to new-particle formation. Here we focus on SOA mass yields and chemical composition from PD photo-oxidation in the CMU smog chamber. To determine the SOA mass yields from this semi-volatile precursor, we had to address partitioning of both the PD and its oxidation products to the chamber walls. After correcting for these losses, we found OA loading dependent SOA mass yields from PD oxidation that ranged between 0.1 and 0.9 for SOA concentrations between 0.02 and 20 µg m−3, these mass yields are 2–3 times larger than typical of much more volatile monoterpenes. The average carbon oxidation state measured with an aerosol mass spectrometer was around −0.7. We modeled the chamber data using a dynamical two-dimensional volatility basis set and found that a significant fraction of the SOA comprises low-volatility organic compounds that could drive new-particle formation and growth, which is consistent with the CLOUD observations.


2008 ◽  
Vol 1 (1) ◽  
pp. 21-65 ◽  
Author(s):  
A. E. Faulhaber ◽  
B. M. Thomas ◽  
J. L. Jimenez ◽  
J. T. Jayne ◽  
D. R. Worsnop ◽  
...  

Abstract. This paper describes the development and evaluation of a method for measuring the vapor pressure distribution and volatility-dependent mass spectrum of organic aerosol particles using a thermodenuder-particle beam mass spectrometer. The method is well suited for use with the widely used Aerodyne Aerosol Mass Spectrometer (AMS) and other quantitative aerosol mass spectrometers. The data that can be obtained are valuable for modeling organic gas-particle partitioning and for gaining improved composition information from aerosol mass spectra. The method is based on an empirically determined relationship between the thermodenuder temperature at which 50% of the organic aerosol mass evaporates (T50) and the organic component vapor pressure at 25°C (P25). This approach avoids the need for complex modeling of aerosol evaporation, which normally requires detailed information on aerosol composition and physical properties. T50 was measured for a variety of monodisperse, single-component organic aerosols with known P25 values and the results used to create a log P25 vs. T50 calibration curve. Experiments and simulations were used to estimate the uncertainties in P25 introduced by variations in particle size and mass concentration as well as mixing with other components. A vapor pressure distribution and volatility-dependent mass spectrum were then measured for laboratory-generated secondary organic aerosol particles. Vaporization profiles from this method can easily be converted to a volatility basis set representation, which shows the distribution of mass vs. saturation concentration and the gas-particle partitioning of aerosol material. The experiments and simulations indicate that this method can be used to estimate organic aerosol component vapor pressures to within approximately an order of magnitude and that useful mass-spectral separation based on volatility can be achieved.


2020 ◽  
Author(s):  
Weiqi Xu ◽  
Chun Chen ◽  
Yanmei Qiu ◽  
Ying Li ◽  
Zhiqiang Zhang ◽  
...  

Abstract. Volatility and viscosity have substantial impacts on gas-particle partitioning, formation and evolution of aerosol, and hence the predictions of aerosol related air quality and climate effects. Here aerosol volatility and viscosity at a rural site (Gucheng) and an urban site (Beijing) in North China Plain (NCP) in summer and winter were investigated by using a thermodenuder coupled with high resolution aerosol mass spectrometer. The effective saturation concentration (C*) of organic aerosol (OA) in summer was smaller than that in winter (0.55 μg m−3 vs. 0.71–0.75 μg m−3), indicating that OA in winter in NCP is more volatile due to enhanced primary emissions from coal combustion and biomass burning. The volatility distributions varied largely different among different OA factors. In particular, we found that hydrocarbon-like OA (HOA) contained more non-volatile compounds compared to coal combustion related OA. The more oxidized oxygenated OA (MO-OOA) showed overall lower volatility than less oxidized OOA (LO-OOA) in both summer and winter, yet the volatility of MO-OOA was found to be relative humidity (RH) dependent showing more volatile properties at higher RH. Our results demonstrated the different composition and chemical formation pathways of MO-OOA under different RH levels. The glass transition temperature (Tg) and viscosity of OA in summer and winter are estimated using the recently developed parameterization formula. Our results showed that the Tg of OA in summer in Beijing (291.5 K) was higher than that in winter (289.7–290.0 K), while it varied greatly among different OA factors. The viscosity suggested that OA existed mainly as solid in winter in Beijing, but as semi-solids in Beijing in summer and Gucheng in winter. These results have important implications that kinetically limited gas-particle partitioning may need to be considered when simulating secondary OA formation in NCP.


2013 ◽  
Vol 13 (1) ◽  
pp. 2759-2793
Author(s):  
S. Chen ◽  
W. H. Brune ◽  
A. Lambe ◽  
P. Davidovits ◽  
T. Onasch

Abstract. A model has been developed to simulate the formation and evolution of secondary organic aerosol (SOA) and was tested against data produced in a Potential Aerosol Mass (PAM) flow reactor and a large environmental chamber. The model framework is based on the two-dimensional volatility basis set approach (2D-VBS), in which SOA oxidation products in the model are distributed on the 2-D space of effective saturation concentration (Ci*) and oxygen-to-carbon ratio (O : C). The modeled organic aerosol mass concentrations (COA) and O : C agree with laboratory measurements within estimated uncertainties. However, while both measured and modeled O : C increase with increasing OH exposure as expected, the increase of modeled O : C is rapid at low OH exposure and then slows as OH exposure increases while the increase of measured O : C is initially slow and then accelerates as OH exposure increases. A global sensitivity analysis indicates that modeled COA values are most sensitive to the assumed values for the number of Ci* bins, the heterogeneous OH reaction rate coefficient, and the yield of first-generation products. Modeled SOA O : C values are most sensitive to the assumed O : C of first-generation oxidation products, the number of Ci* bins, the heterogeneous OH reaction rate coefficient, and the number of O : C bins. All these sensitivities vary as a function of OH exposure. The sensitivity analysis indicates that the 2D-VBS model framework may require modifications to resolve discrepancies between modeled and measured O : C as a function of OH exposure.


2007 ◽  
Vol 7 (3) ◽  
pp. 8617-8662 ◽  
Author(s):  
N. Hock ◽  
J. Schneider ◽  
S. Borrmann ◽  
A. Römpp ◽  
G. Moortgat ◽  
...  

Abstract. Detailed investigations of the chemical and microphysical properties of rural continental aerosols were performed during the HAZE2002 experiment, which was conducted in May 2002 at the Meteorological Observatory Hohenpeissenberg (DWD) in Southern Germany. The online measurement data and techniques included: size-resolved chemical composition of submicron particles by aerosol mass spectrometry (AMS); total particle number concentrations and size distributions over the diameter range of 3 nm to 9 μm (CPC, SMPS, OPC); monoterpenes determined by gas chromatography- ion trap mass spectrometry; OH and H2SO4 determined by atmospheric pressure chemical ionization mass spectrometry (CIMS). Filter sampling and offline analytical techniques were used to determine: fine particle mass (PM2.5), organic, elemental and total carbon in PM2.5 (OC2.5, EC2.5, TC2.5), and selected organic compounds (dicarboxylic acids, polycyclic aromatic hydrocarbons, proteins). Overall, the non-refractory components of submicron particles detected by aerosol mass spectrometry (PM1, 6.6±5.4 μg m−3, arithmetic mean and standard deviation) accounted for ~62% of PM2.5 determined by filter gravimetry (10.6±4.7 μg m−3). The relative proportions of non-refractory submicron particle components were: 11% ammonium, 19% nitrate, 20% sulfate, and 50% organics (OM1). In spite of strongly changing meteorological conditions and absolute concentration levels of particulate matter (3–13 μg m−3 PM1), OM1 was closely correlated with PM1 (r2=0.9) indicating a near-constant ratio of non-refractory organics and inorganics. In contrast, the ratio of nitrate to sulfate was highly dependent on temperature (14–32°C) and relative humidity (20–100%), which could be explained by thermodynamic model calculations of NH3/HNO3/NH4NO3 gas-particle partitioning. From the combination of optical and other sizing techniques (OPC, AMS, SMPS), an average refractive index of 1.40–1.45 was inferred for the measured rural aerosol particles. The average ratio of OM1 to OC2.5 was 2, indicating a high proportion of heteroelements in the organic fraction of the sampled rural aerosol. This is consistent with the high ratio of oxygenated organic aerosol (OOA) over hydrocarbon-like organic aerosol (HOA) inferred from the AMS results (4:1), and also with the high abundance of proteins (~3%) indicating a high proportion of primary biological material (~30%) in PM2.5. Moreover, the low abundance of PAHs (<1 ng m−3) and EC (<1 μg m−3) in PM2.5 confirm a low contribution of combustion emissions, which are usually also major sources for HOA. Slightly enhanced HOA concentrations indicating fresh anthropogenic emissions were observed during a period when air masses were advected from the densely populated Po Valley, Italy. Detection of several secondary organic aerosol compounds (dicarboxylic acids) and their precursors (monoterpenes) confirmed the finding that secondary aerosol from natural sources was an important aerosol constituent. A sharp decrease of the short lived monoterpenes indicated that during night-time the measurement station was isolated from ground emission sources by a stable inversion layer. Nighttime values can therefore be regarded to represent regional or long range transport. New particle formation was observed almost every day with particle number concentrations exceeding 104 cm−3 (nighttime background level 1000–2000 cm−3). Closer inspection of two major events indicated that ternary H2SO4/H2O/NH3 nucleation triggered particle formation and that condensation of both organic and inorganic species contributed to particle growth.


2010 ◽  
Vol 10 (8) ◽  
pp. 20329-20353
Author(s):  
C. R. Ruehl ◽  
W. A. Ham ◽  
M. J. Kleeman

Abstract. Molecular markers are organic compounds used to represent known sources of particulate matter (PM) in statistical source apportionment studies. The utility of molecular markers depends on, among other things, their ability to represent PM volatility under realistic atmospheric conditions. We measured the particle-phase concentrations and temperature-induced volatility of commonly-used molecular markers in California's heavily polluted San Joaqin Valley. Concentrations of elemental carbon, organic carbon, levoglucosan, and polycyclic aromatic hydrocarbons were not reduced by mild (~10 K) heating. In contrast, both hopane/sterane and n-alkane concentrations were reduced, especially during the summer sampling events at the urban site. These results suggest that hopanes and steranes have effective saturation concentrations ~1 μg m−3, and therefore can be considered semi-volatile in realistic ambient conditions. The volatility behavior of n-alkanes during the urban summer is consistent with that predicted for absorption by suberic acid (a C8 diacid) using a group contribution modelling method. Observations can also be matched by an absorbent whose composition is based on recently-obtained high-resolution aerosol mass spectrometer factors (approximately 33% "hydrocarbon-like" and 67% oxygenated organic aerosol). The diminished volatility of the n-alkanes, hopanes, and steranes during rural and/or winter experiments could be explained by a more oxygenated absorbing phase along with a non-absorptive partitioning mechanism, such as adsorption to soot. This suggests that the temperature-induced volatility of large hydrocarbons in PM is most important if a relatively non-polar absorbing organic phase exists. While the activity coefficients of most organic aerosol compounds may be close to unity, the assumption of ideality for large hydrocarbons (e.g., hopanes) may result in large errors in partitioning calculations.


2010 ◽  
Vol 40 (10) ◽  
pp. 1550-1557
Author(s):  
YuanHang ZHANG ◽  
Lian XUE ◽  
LingYan HE ◽  
QiJing BIAN ◽  
Min HU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document