scholarly journals An Evaluation of Annual Luminous Exposure from Daylight in a Museum Room with a Translucent Ceiling

Buildings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 193
Author(s):  
Marcin Brzezicki

The current study investigates the issue of computer-aided daylight evaluation in a museum room with a dropped translucent ceiling. In this type of room, daylight is admitted through classic windows located in the facade and then distributed in the plenum, which is located above the exhibition space and transmitted through the translucent ceiling into the museum room. This illumination method enables guiding daylight deep into the room, excluding the impact of direct solar radiation. The presented study is based on data obtained through computer-aided daylight simulation by DeLuminæ (DL-Light, ver. 11.0.9) software using the Radiance software for all calculations and real weather data for Wroclaw, Poland. A museum room of 12 × 12 m with three different heights of the plenums was simulated to establish an optimal relation of the width to height plenum ratio. Next, the annual exposure in K lx·h/year was calculated, as sensitive works of art may be subjected to damage caused by light exposure. To further reduce illumination, the simulation of an automatic shading system in the form of horizontal louvers was performed. The system was activated when certain illumination values were detected by the sensor on the building’s roof.

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 524
Author(s):  
Jihui Yuan ◽  
Kazuo Emura ◽  
Craig Farnham

The Typical meteorological year (TMY) database is often used to calculate air-conditioning loads, and it directly affects the building energy savings design. Among four kinds of TMY databases in China—including Chinese Typical Year Weather (CTYW), International Weather for Energy Calculations (IWEC), Solar Wind Energy Resource Assessment (SWERA) and Chinese Standard Weather Data (CSWD)—only CSWD is measures solar radiation, and it is most used in China. However, the solar radiation of CSWD is a measured daily value, and its hourly value is separated by models. It is found that the cloud ratio (diffuse solar radiation divided by global solar radiation) of CSWD is not realistic in months of May, June and July while compared to the other sets of TMY databases. In order to obtain a more accurate cloud ratio of CSWD for air-conditioning load calculation, this study aims to propose a method of refining the cloud ratio of CSWD in Shanghai, China, using observed solar radiation and the Perez model which is a separation model of high accuracy. In addition, the impact of cloud ratio on air-conditioning load has also been discussed in this paper. It is shown that the cloud ratio can yield a significant impact on the air conditioning load.


2019 ◽  
Vol 91 ◽  
pp. 05006
Author(s):  
Rami Qaoud ◽  
Alkama Djamal

The urban fabric of the desert cities is based on the principle of reducing the impact of urban canyons on direct solar radiation. Here comes this research, which is based on a comparative study of the periods of direct solarisation and values of the solar energy of urban canyons via two urban fabrics that have different building densities, where the ratio between L/W is different. In order to obtain the real values of the solar energy (thermal, lighting), the test field was examined every two hours, each three consecutive days. The measurement stations are positioned by the three types of the relationship between L/W, (L≥2w, L=w, L≤0.5w). According to the results, we noticed and recorded the difference in the periods of direct solarization between the types of urban engineering canyons, reaching 6 hours a day, the difference in thermal values of air, reaching 4 °C, and the difference in periods of direct natural lighting, reaching 6 hours. It should be noted that the role of the relationship between L/W is to protect the urban canyons by reducing the impact of direct solar radiation on urban canyons, providing longer hours of shading, and reducing solar energy levels (thermal, lighting) at the urban canyons. This research is classified under the research axis (the studies of external spaces in the urban environment according to the bioclimatic approach and geographic approach). But this research aims to focus on the tracking and studying the distribution of the solar radiation - thermal radiation and lighting radiation - in different types of street canyons by comparing the study of the direct solarization periods of each type and the quantity of solar energy collected during the solarization periods.


1970 ◽  
Vol 8 (3) ◽  
pp. 147-167 ◽  
Author(s):  
Yam K Rai ◽  
Bhakta B Ale ◽  
Jawed Alam

Climate change and global warming are burning issues, which significantly threat agriculture and global food security. Change in solar radiation, temperature and precipitation will influence the change in crop yields and hence economy of agriculture. It is possible to understand the phenomenon of climate change on crop production and to develop adaptation strategies for sustainability in food production, using a suitable crop simulation model. CERES-Rice model of DSSAT v4.0 was used to simulate the rice yield of the region under climate change scenarios using the historical weather data at Nepal Agriculture Research Council (NARC) Tarahara (1989-2008). The Crop Model was calibrated using the experimental crop data, climate data and soil data for two years (2000-2001) and was validated by using the data of the year 2002 at NARC Tarahara. In this study various scenarios were undertaken to analyze the rice yield. The change in values of weather parameters due to climate change and its effects on the rice yield were studied. It was observed that increase in maximum temperature up to 2°C and 1°C in minimum temperature have positive impact on rice yield but beyond that temperature it was observed negative impact in both cases of paddy production in ambient temperature. Similarly, it was observed that increased in mean temperature, have negative impacts on rice yield. The impact of solar radiation in rice yield was observed positive during the time of study period. Adjustments were made in the fertilizer rate, plant density per square meter, planting date and application of water rate to investigate suitable agronomic options for adaptation under the future climate change scenarios. Highest yield was obtained when the water application was increased up to 3 mm depth and nitrogen application rate was 140 kg/ha respectively. DOI: http://dx.doi.org/10.3126/jie.v8i3.5941 JIE 2011; 8(3): 147-167


OENO One ◽  
2011 ◽  
Vol 45 (2) ◽  
pp. 85 ◽  
Author(s):  
Laura Rustioni ◽  
Mara Rossoni ◽  
Gabriele Cola ◽  
Luigi Mariani ◽  
Osvaldo Failla

<p style="text-align: justify;"><strong>Aims</strong>: Berry anthocyanin contents were studied in eight different field experiments involving various grapevine (<em>Vitis vinifera</em> L.) cultivars (Syrah, Croatina, Sangiovese, Nebbiolo, Nebbiolo Rosé, Carmènere and Cannonau) in a variety of sites located in Northern Italy.</p><p style="text-align: justify;"><strong>Methods and results</strong>: In each experiment, global irradiance was reduced by approximately 95% by applying specially designed boxes to selected bunches before the onset of ripening. Variations in anthocyanin accumulation and profile were studied on sun exposed and shaded bunches. Exposed bunches were subjected to less favorable temperatures for biosynthetic metabolism than shaded bunches, due to frequent excessive temperatures around noon.</p><p style="text-align: justify;"><strong>Conclusions</strong>: Exposure to direct solar radiation induced an earlier and faster anthocyanin accumulation and a higher anthocyanin concentration across all the experiments, at least from veraison to mid ripening. In fact, the light induced elevated rate of anthocyanin accumulation did not always result in a higher anthocyanin content at grape maturity. In the cultivars with a relatively high proportion of acylated forms, sun exposure resulted in a relative increase in the quantities of non-acylated glucoside forms, while the acylation profile of cultivars that generally had a lower proportion of acylated forms was only minimally influenced by sun exposure.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: Akey observation resulting from anthocyanin profiling is the strong positive correlation between light exposure and increases in the percentage of delphinidin-, cyanidin- and petunidin-3-monoglucoside, that is, anthocyanins containing an orthodihydroxyl group.</p>


2015 ◽  
Vol 15 (5) ◽  
pp. 2693-2707 ◽  
Author(s):  
A. Montornès ◽  
B. Codina ◽  
J. W. Zack

Abstract. Although ozone is an atmospheric gas with high spatial and temporal variability, mesoscale numerical weather prediction (NWP) models simplify the specification of ozone concentrations used in their shortwave schemes by using a few ozone profiles. In this paper, a two-part study is presented: (i) an evaluation of the quality of the ozone profiles provided for use with the shortwave schemes in the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) model and (ii) an assessment of the impact of deficiencies in those profiles on the performance of model simulations of direct solar radiation. The first part compares simplified data sets used to specify the total ozone column in six schemes (i.e., Goddard, New Goddard, RRTMG, CAM, GFDL and Fu–Liou–Gu) with the Multi-Sensor Reanalysis data set during the period 1979–2008 examining the latitudinal, longitudinal and seasonal limitations in the ozone profile specifications of each parameterization. The results indicate that the maximum deviations are over the poles and show prominent longitudinal patterns in the departures due to the lack of representation of the patterns associated with the Brewer–Dobson circulation and the quasi-stationary features forced by the land–sea distribution, respectively. In the second part, the bias in the simulated direct solar radiation due to these deviations from the simplified spatial and temporal representation of the ozone distribution is analyzed for the New Goddard and CAM schemes using the Beer–Lambert–Bouguer law and for the GFDL using empirical equations. For radiative applications those simplifications introduce spatial and temporal biases with near-zero departures over the tropics throughout the year and increasing poleward with a maximum in the high middle latitudes during the winter of each hemisphere.


Solar Energy ◽  
2006 ◽  
Author(s):  
Adnan Al-Anzi ◽  
Donghyun Seo ◽  
Moncef Krarti

This paper summarizes the results of a comparative analysis for four models utilized to predict solar radiation in Kuwait City, Kuwait. The four models include the Kasten model, Zhang and Huang model, Muneer model, and neural network based model. The analysis was based on hourly measured solar data for Kuwait City. The measured hourly solar radiation data are obtained for the year 1994 and include global, direct, and diffuse solar radiation. Non-solar weather data for the same year and site are obtained from the US National Climatic Data Center (NCDC). Weather files suitable for building energy simulation are developed using measured data as well as predictions from the four solar models. A series of simulation analysis to determine the impact of solar model selection for the weather file on the energy use predictions from a whole-building simulation program using office buildings in Kuwait. The results of the validation analysis and the simulation evalaution indicate that Zhang and Huang model is suitable for the predicting hourly solar radiation suitable for energy analysis of buildings in Kuwait.


2014 ◽  
Vol 14 (14) ◽  
pp. 20231-20257
Author(s):  
A. Montornès ◽  
B. Codina ◽  
J. W. Zack

Abstract. Although ozone is an atmospheric gas with high spatial and temporal variability, mesoscale numerical weather prediction (NWP) models simplify the specification of ozone concentrations used in their shortwave schemes by using a few ozone profiles. In this paper, a two-part study is presented: (i) an assessment of the quality of the ozone profiles provided for use with the shortwave schemes in the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) model and (ii) the impact of deficiencies in those profiles on the performance of model simulations of direct solar radiation. The first part compares simplified datasets used to specify the total ozone column in five schemes (i.e. Goddard, New Goddard, RRTMG, CAM and Fu–Liou–Gu) with the Multi-Sensor Reanalysis dataset during the period 1979–2008 examining the latitudinal, longitudinal and seasonal limitations in the ozone modeling of each parameterization. The results indicate that the maximum deviations are over the poles due to the Brewer–Dobson circulation and there are prominent longitudinal patterns in the departures due to quasi-stationary features forced by the land–sea distribution. In the second part, the bias in the simulated direct solar radiation due to these deviations from the simplified spatial and temporal representation of the ozone distribution is analyzed for the New Goddard and CAM schemes using the Beer–Lambert–Bouger law. For radiative applications those simplifications introduce spatial and temporal biases with near-zero departures over the tropics during all the year and increasing poleward with a maximum in the high middle latitudes during the winter of each hemisphere.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Adnan Al-Anzi ◽  
Donghyun Seo ◽  
Moncef Krarti

This paper summarizes the results of a comparative analysis for four models utilized to predict solar radiation in Kuwait City, Kuwait. The four models include the Kasten model, Zhang and Huang model, Muneer model, and neural network based model. The analysis was based on hourly measured solar data for Kuwait City. The measured hourly solar radiation data are obtained for the year 1994 and include global, direct, and diffuse solar radiations. Nonsolar weather data for the same year and site are obtained from the US National Climatic Data Center (NCDC). Weather files suitable for building energy simulation are developed using measuered data as well as predictions from the four solar models. A series of simulation analysis to determine the impact of solar model selection for the weather file on the energy uses predictions from a whole-building simulation program using office buildings in Kuwait. The results of the validation analysis and the simulation evaluation indicate that Zhang and Huang model is suitable for the predicting hourly solar radiation suitable for energy analysis of buildings in Kuwait.


2020 ◽  
Author(s):  
Hendrik Naujokat ◽  
Klaas Loger ◽  
Juliane Schulz ◽  
Yahya Açil ◽  
Jörg Wiltfang

Aim: This study aimed to evaluate two different vascularized bone flap scaffolds and the impact of two barrier membranes for the reconstruction of critical-size bone defects. Materials & methods: 3D-printed scaffolds of biodegradable calcium phosphate and bioinert titanium were loaded with rhBMP-2 bone marrow aspirate, wrapped by a collagen membrane or a periosteum transplant and implanted into the greater omentum of miniature pigs. Results: Histological evaluation demonstrated significant bone formation within the first 8 weeks in both scaffolds. The periosteum transplant led to enhanced bone formation and a homogenous distribution in the scaffolds. The omentum tissue grew out a robust vascular supply. Conclusion: Endocultivation using 3D-printed scaffolds in the greater omentum is a very promising approach in defect-specific bone tissue regeneration.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 802
Author(s):  
Kristian Skeie ◽  
Arild Gustavsen

In building thermal energy characterisation, the relevance of proper modelling of the effects caused by solar radiation, temperature and wind is seen as a critical factor. Open geospatial datasets are growing in diversity, easing access to meteorological data and other relevant information that can be used for building energy modelling. However, the application of geospatial techniques combining multiple open datasets is not yet common in the often scripted workflows of data-driven building thermal performance characterisation. We present a method for processing time-series from climate reanalysis and satellite-derived solar irradiance services, by implementing land-use, and elevation raster maps served in an elevation profile web-service. The article describes a methodology to: (1) adapt gridded weather data to four case-building sites in Europe; (2) calculate the incident solar radiation on the building facades; (3) estimate wind and temperature-dependent infiltration using a single-zone infiltration model and (4) including separating and evaluating the sheltering effect of buildings and trees in the vicinity, based on building footprints. Calculations of solar radiation, surface wind and air infiltration potential are done using validated models published in the scientific literature. We found that using scripting tools to automate geoprocessing tasks is widespread, and implementing such techniques in conjunction with an elevation profile web service made it possible to utilise information from open geospatial data surrounding a building site effectively. We expect that the modelling approach could be further improved, including diffuse-shading methods and evaluating other wind shelter methods for urban settings.


Sign in / Sign up

Export Citation Format

Share Document