scholarly journals Airborne measurements of nucleation mode particles I: coastal nucleation and growth rates

2006 ◽  
Vol 6 (4) ◽  
pp. 8097-8123 ◽  
Author(s):  
C. D. O’Dowd ◽  
Y. J. Yoon ◽  
W. Junkerman ◽  
P. Aalto ◽  
M. Kulmala ◽  
...  

Abstract. A light aircraft was equipped with a bank of Condensation Particle Counters (CPCs) (50% cut from 3–5.4–9.6 nm) and a nano-Scanning Mobility Particle Sizer (nSMPS) and deployed along the west coast of Ireland, in the vicinity of Mace Head. The objective of the exercise was to provide high resolution micro-physical measurements of the coastal nucleation mode in order to map the spatial extent of new particle production regions and to evaluate the evolution, and associated growth rates of the coastal nucleation-mode aerosol plume. Results indicate that coastal new particle production is occurring over most areas along the land-sea interface with peak concentrations at the coastal plume-head in excess of 106 cm−3. Pseudo-Lagrangian studies of the coastal plume evolution illustrated significant growth of new particles to sizes in excess of 8 nm approximately 10 km downwind of the source region. Close to the plume head (<1 km) growth rates can be as high as 123–171 nm h−1, decreasing gradually to 53–72 nm h−1 at 3 km. Further along the plume, at distances up to 10 km, the growth rates are calculated to be 17–32 nm h−1. Growth rates of this magnitude suggest that after a couple of hours, coastal nucleation mode particles can reach significant sizes where they can contribution to the regional aerosol loading.

2007 ◽  
Vol 7 (6) ◽  
pp. 1491-1501 ◽  
Author(s):  
C. D. O'Dowd ◽  
Y. J. Yoon ◽  
W. Junkerman ◽  
P. Aalto ◽  
M. Kulmala ◽  
...  

Abstract. A light aircraft was equipped with a bank of Condensation Particle Counters (CPCs) (50% cut from 3–5.4–9.6 nm) and a nano-Scanning Mobility Particle Sizer (nSMPS) and deployed along the west coast of Ireland, in the vicinity of Mace Head. The objective of the exercise was to provide high resolution micro-physical measurements of the coastal nucleation mode in order to map the spatial extent of new particle production regions and to evaluate the evolution, and associated growth rates of the coastal nucleation-mode aerosol plume. Results indicate that coastal new particle production is occurring over most areas along the land-sea interface with peak concentrations at the coastal plume-head in excess of 106 cm−3. Pseudo-Lagrangian studies of the coastal plume evolution illustrated significant growth of new particles to sizes in excess of 8 nm approximately 10 km downwind of the source region. Close to the plume head (<1 km) growth rates can be as high as 123–171 nm h−1, decreasing gradually to 53–72 nm h−1 at 3 km. Further along the plume, at distances up to 10 km, the growth rates are calculated to be 17–32 nm h−1. Growth rates of this magnitude suggest that after a couple of hours, coastal nucleation mode particles can reach significant sizes where they can contribution to the regional aerosol loading.


2008 ◽  
Vol 8 (1) ◽  
pp. 2821-2848 ◽  
Author(s):  
C. D. O'Dowd ◽  
Y. J. Yoon ◽  
W. Junkerman ◽  
P. Aalto ◽  
M. Kulmala ◽  
...  

Abstract. Airborne measurements of nucleation mode aerosol concentrations during nucleation events over the boreal forest of southern Finland are reported. Three case studies are analysis in an attempt to characterise the spatial scales over which these events occur and to identify the source region for particle production. For the cases presented, there is no evidence of nucleation mode particles in the Free Troposphere. Nucleation mode particles are first detected in the surface layer as the nocturnal inversion breaks up and develops into the current-day's new boundary layer. In terms of spatial variability, significant variability in the concentration of nucleation mode particles was observed and was attributed to changes in the topography which comprised a mix of forest canopy and frozen lakes. Measurements over the Gulf of Bothnia indicated no nucleation mode over the sea and confirm that the scale of the events is associated with the boreal forest scale and that the new particles are produced directly above the forest canopy.


2009 ◽  
Vol 9 (3) ◽  
pp. 937-944 ◽  
Author(s):  
C. D. O'Dowd ◽  
Y. J. Yoon ◽  
W. Junkermann ◽  
P. Aalto ◽  
M. Kulmala ◽  
...  

Abstract. Airborne measurements of nucleation mode aerosol concentrations during nucleation events over the boreal forest of southern Finland are reported. Three case studies are analyzed in an attempt to characterise the spatial scales over which these events occur and to identify the source region for particle production. For the cases presented, there is no evidence of nucleation mode particles in the Free Troposphere. Nucleation mode particles are first detected in the surface layer as the nocturnal inversion breaks up and develops into the current-day's new boundary layer. In terms of spatial variability, significant variability in the concentration of nucleation mode particles was observed and was attributed to changes in the topography which comprised a mix of forest canopy and frozen lakes. Measurements over the Gulf of Bothnia indicated no nucleation mode over the sea and confirm that the scale of the events is associated with the boreal forest scale and that the new particles are produced directly above the forest canopy.


2004 ◽  
Vol 4 (3) ◽  
pp. 609-620 ◽  
Author(s):  
U. Mathis ◽  
M. Mohr ◽  
R. Zenobi

Abstract. The nucleation of nanoparticles in the exhaust of a modern light-duty diesel vehicle was investigated on a chassis dynamometer. This laboratory study is focused on the influence of volatile organic compounds (VOCs) on nucleation of volatile nanoparticles. Different organic compounds were added to the dilution air of the particle sampling under different sampling conditions. Sample temperature and relative sample humidity were varied in a wide range. The number size distribution of the particles was measured with a scanning mobility particle sizer (SMPS) and showed significant differences in response to the added organic compounds. While the nucleation mode particles showed a large variation in concentration, the accumulation mode particles remained unchanged for all compounds. Depending on the functional group, organic compounds were capable of initiating and increasing (alcohols and toluene) or decreasing (acetone, aniline, and methyl tert-butyl ether (MTBE)) nucleation mode particles. Short volatile aliphatic hydrocarbons (hexane and cyclohexane) turned out to be without effect on nucleation of nanoparticles. Possible reasons for the differences are discussed.


2004 ◽  
Vol 4 (1) ◽  
pp. 227-265 ◽  
Author(s):  
U. Mathis ◽  
M. Mohr ◽  
R. Zenobi

Abstract. The nucleation of nanoparticles in the exhaust of a modern light-duty diesel vehicle was investigated on a chassis dynamometer. This laboratory study is focused on the influence of volatile organic compounds (VOCs) on nucleation of volatile nanoparticles. Different organic compounds were added to the dilution air of the particle sampling under different sampling conditions. Sample temperature and relative sample humidity were varied in a wide range. The number size distribution of the particles was measured with a scanning mobility particle sizer (SMPS) and showed significant differences in response to the added organic compounds. While the nucleation mode particles showed a large variation in concentration, the accumulation mode particles remained unchanged for all compounds. Depending on the functional group, organic compounds were capable of initiating and increasing (alcohols and toluene) or decreasing (acetone, aniline, and methyl tert-butyl ether (MTBE)) nucleation mode particles. Short volatile aliphatic hydrocarbons (hexane and cyclohexane) turned out to be without effect on nucleation of nanoparticles. Possible reasons for the differences are discussed.


Author(s):  
Malte Bierwirth ◽  
Vinzent Olszok ◽  
Varun Aiyar Ganesan ◽  
Jalal Poostforooshan ◽  
Alfred P. Weber

Gefahrstoffe ◽  
2020 ◽  
Vol 80 (01-02) ◽  
pp. 25-32
Author(s):  
C. Asbach ◽  
T. A. J. Kuhlbusch ◽  
U. Quass ◽  
H. Kaminski

Seit Anfang 2009 werden an einer städtischen Hintergrundmessstation in Mülheim-Styrum im westlichen Ruhrgebiet Anzahlkonzentration, Anzahlgrößenverteilung und lungendeponierbare Oberflächenkonzentration submikroner und ultrafeiner Partikel gemessen. Die dazu eingesetzten Messgeräte Scanning Mobility Particle Sizer (SMPS) und Nanoparticle Surface Area Monitor (NSAM) erwiesen sich als gut geeignet für derartige Messaufgaben. Insbesondere das NSAM ist sehr robust und zuverlässig und wird daher neben der Bestimmung der lungendeponierbaren Oberflächenkonzentration auch zur Funktionsüberwachung des SMPS verwendet. Die ultrafeinen Partikel an der Messstation stammen zu einem großen Teil von einer nahegelegenen Autobahn sowie diversen anderen Quellen in der näheren Umgebung. Der etwa 20 km südlich gelegene Flughafen Düsseldorf scheint keinen merklichen Einfluss zu haben. Eine Auswertung der Wochengänge zeigte überraschenderweise, dass in allen Jahren samstagnachts die im Wochenverlauf höchste Anzahlkonzentration von Partikeln >100 nm gemessen wurde. Während an allen anderen Wochentagen die mittleren Konzentrationen seit 2009 kontinuierlich gesunken sind, blieb die Höhe des Maximums in der Nacht von Samstag auf Sonntag nahezu konstant, was auf eine unveränderte, zeitlich sehr begrenzte Quelle hindeutet.


2018 ◽  
Vol 47 (7) ◽  
pp. 777-787 ◽  
Author(s):  
Simon E. Wawra ◽  
Martin Thoma ◽  
Johannes Walter ◽  
Christian Lübbert ◽  
Thaseem Thajudeen ◽  
...  

2018 ◽  
Vol 18 (19) ◽  
pp. 14637-14651 ◽  
Author(s):  
Yingjie Zhang ◽  
Wei Du ◽  
Yuying Wang ◽  
Qingqing Wang ◽  
Haofei Wang ◽  
...  

Abstract. The North China Plain (NCP) has experienced frequent severe haze pollution events in recent years. While extensive measurements have been made in megacities, aerosol sources, processes, and particle growth at urban downwind sites remain less understood. Here, an aerosol chemical speciation monitor and a scanning mobility particle sizer, along with a suite of collocated instruments, were deployed at the downwind site of Xingtai, a highly polluted city in the NCP, for real-time measurements of submicron aerosol (PM1) species and particle number size distributions during May and June 2016. The average mass concentration of PM1 was 30.5 (±19.4) µg m−3, which is significantly lower than that during wintertime. Organic aerosols (OAs) constituted the major fraction of PM1 (38 %), followed by sulfate (25 %) and nitrate (14 %). Positive matrix factorization with the multilinear engine version 2 showed that oxygenated OA (OOA) was the dominant species in OA throughout the study, on average accounting for 78 % of OA, while traffic and cooking emissions both accounted for 11 % of OA. Our results highlight that aerosol particles at the urban downwind site were highly aged and mainly from secondary formation. However, the diurnal cycle also illustrated the substantial influence of urban emissions on downwind sites, which are characterized by similar pronounced early morning peaks for most aerosol species. New particle formation and growth events were also frequently observed (58 % of the time) on both clean and polluted days. Particle growth rates varied from 1.2 to 4.9 nm h−1 and our results showed that sulfate and OOA played important roles in particle growth during clean periods, while OOA was more important than sulfate during polluted events. Further analyses showed that particle growth rates have no clear dependence on air mass trajectories.


Sign in / Sign up

Export Citation Format

Share Document