scholarly journals Airborne measurements of nucleation mode particles II: boreal forest nucleation events

2009 ◽  
Vol 9 (3) ◽  
pp. 937-944 ◽  
Author(s):  
C. D. O'Dowd ◽  
Y. J. Yoon ◽  
W. Junkermann ◽  
P. Aalto ◽  
M. Kulmala ◽  
...  

Abstract. Airborne measurements of nucleation mode aerosol concentrations during nucleation events over the boreal forest of southern Finland are reported. Three case studies are analyzed in an attempt to characterise the spatial scales over which these events occur and to identify the source region for particle production. For the cases presented, there is no evidence of nucleation mode particles in the Free Troposphere. Nucleation mode particles are first detected in the surface layer as the nocturnal inversion breaks up and develops into the current-day's new boundary layer. In terms of spatial variability, significant variability in the concentration of nucleation mode particles was observed and was attributed to changes in the topography which comprised a mix of forest canopy and frozen lakes. Measurements over the Gulf of Bothnia indicated no nucleation mode over the sea and confirm that the scale of the events is associated with the boreal forest scale and that the new particles are produced directly above the forest canopy.

2008 ◽  
Vol 8 (1) ◽  
pp. 2821-2848 ◽  
Author(s):  
C. D. O'Dowd ◽  
Y. J. Yoon ◽  
W. Junkerman ◽  
P. Aalto ◽  
M. Kulmala ◽  
...  

Abstract. Airborne measurements of nucleation mode aerosol concentrations during nucleation events over the boreal forest of southern Finland are reported. Three case studies are analysis in an attempt to characterise the spatial scales over which these events occur and to identify the source region for particle production. For the cases presented, there is no evidence of nucleation mode particles in the Free Troposphere. Nucleation mode particles are first detected in the surface layer as the nocturnal inversion breaks up and develops into the current-day's new boundary layer. In terms of spatial variability, significant variability in the concentration of nucleation mode particles was observed and was attributed to changes in the topography which comprised a mix of forest canopy and frozen lakes. Measurements over the Gulf of Bothnia indicated no nucleation mode over the sea and confirm that the scale of the events is associated with the boreal forest scale and that the new particles are produced directly above the forest canopy.


2007 ◽  
Vol 7 (6) ◽  
pp. 1491-1501 ◽  
Author(s):  
C. D. O'Dowd ◽  
Y. J. Yoon ◽  
W. Junkerman ◽  
P. Aalto ◽  
M. Kulmala ◽  
...  

Abstract. A light aircraft was equipped with a bank of Condensation Particle Counters (CPCs) (50% cut from 3–5.4–9.6 nm) and a nano-Scanning Mobility Particle Sizer (nSMPS) and deployed along the west coast of Ireland, in the vicinity of Mace Head. The objective of the exercise was to provide high resolution micro-physical measurements of the coastal nucleation mode in order to map the spatial extent of new particle production regions and to evaluate the evolution, and associated growth rates of the coastal nucleation-mode aerosol plume. Results indicate that coastal new particle production is occurring over most areas along the land-sea interface with peak concentrations at the coastal plume-head in excess of 106 cm−3. Pseudo-Lagrangian studies of the coastal plume evolution illustrated significant growth of new particles to sizes in excess of 8 nm approximately 10 km downwind of the source region. Close to the plume head (<1 km) growth rates can be as high as 123–171 nm h−1, decreasing gradually to 53–72 nm h−1 at 3 km. Further along the plume, at distances up to 10 km, the growth rates are calculated to be 17–32 nm h−1. Growth rates of this magnitude suggest that after a couple of hours, coastal nucleation mode particles can reach significant sizes where they can contribution to the regional aerosol loading.


2006 ◽  
Vol 6 (4) ◽  
pp. 8097-8123 ◽  
Author(s):  
C. D. O’Dowd ◽  
Y. J. Yoon ◽  
W. Junkerman ◽  
P. Aalto ◽  
M. Kulmala ◽  
...  

Abstract. A light aircraft was equipped with a bank of Condensation Particle Counters (CPCs) (50% cut from 3–5.4–9.6 nm) and a nano-Scanning Mobility Particle Sizer (nSMPS) and deployed along the west coast of Ireland, in the vicinity of Mace Head. The objective of the exercise was to provide high resolution micro-physical measurements of the coastal nucleation mode in order to map the spatial extent of new particle production regions and to evaluate the evolution, and associated growth rates of the coastal nucleation-mode aerosol plume. Results indicate that coastal new particle production is occurring over most areas along the land-sea interface with peak concentrations at the coastal plume-head in excess of 106 cm−3. Pseudo-Lagrangian studies of the coastal plume evolution illustrated significant growth of new particles to sizes in excess of 8 nm approximately 10 km downwind of the source region. Close to the plume head (<1 km) growth rates can be as high as 123–171 nm h−1, decreasing gradually to 53–72 nm h−1 at 3 km. Further along the plume, at distances up to 10 km, the growth rates are calculated to be 17–32 nm h−1. Growth rates of this magnitude suggest that after a couple of hours, coastal nucleation mode particles can reach significant sizes where they can contribution to the regional aerosol loading.


2014 ◽  
Vol 14 (18) ◽  
pp. 25095-25138 ◽  
Author(s):  
M. D. Jolleys ◽  
H. Coe ◽  
G. McFiggans ◽  
J. W. Taylor ◽  
S. J. O'Shea ◽  
...  

Abstract. Airborne measurements of biomass burning organic aerosol (BBOA) from boreal forest fires reveal highly contrasting properties for plumes of different ages. These measurements, performed using an Aerodyne Research Inc. compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) during the BORTAS (quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) experiment in the summer of 2011, have been used to derive normalised excess organic aerosol (OA) mass concentrations (ΔOA/ΔCO), with higher average ratios observed closer to source (0.190 ± 0.010) than in the far-field (0.097 ± 0.002). The difference in ΔOA/ΔCO between fresh and aged plumes is influenced by a change in dominant combustion conditions throughout the campaign. Measurements at source sampled largely smouldering fires, while plumes encountered in the far-field originated from fires occurring earlier in the campaign when fire activity had been more intense. Changing combustion conditions also affect the vertical distribution of biomass burning emissions, as aged plumes from more flaming-dominated fires are injected to higher altitudes of up to 6000 m. Proportional contributions of the mass-to-charge ratio (m/z) 60 and 44 peaks in the AMS mass spectra to the total OA mass (denoted f60 and f44) are used as tracers for primary and oxidized BBOA, respectively. Given the shorter aging times associated with near-field plumes, f44 is lower on average than in more aged, transported plumes. However, high levels of ΔO3/ΔCO and -log(NOx/NOy) close to source indicate that emissions can be subject to very rapid oxidation over short timescales. Conversely, the lofting of plumes into the upper troposphere can lead to the retention of source profiles after transportation over extensive temporal and spatial scales, with f60 also higher on average in aged plumes. Evolution of OA composition with aging is comparable to observations of BB tracers in previous studies, revealing a consistent progression from f60 to f44. The elevated levels of oxygenation in aged plumes, and their association with lower average ΔOA/ΔCO, highlight the influence of OA losses during aging, although there remain considerable uncertainties regarding the role of combustion processes on BBOA production and composition.


2015 ◽  
Vol 15 (6) ◽  
pp. 3077-3095 ◽  
Author(s):  
M. D. Jolleys ◽  
H. Coe ◽  
G. McFiggans ◽  
J. W. Taylor ◽  
S. J. O'Shea ◽  
...  

Abstract. Airborne measurements of biomass burning organic aerosol (BBOA) from boreal forest fires reveal highly contrasting properties for plumes of different ages. These measurements, performed using an Aerodyne Research Inc. compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) during the BORTAS (quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) experiment in the summer of 2011, have been used to derive normalised excess organic aerosol (OA) mass concentrations (ΔOA / ΔCO), with higher average ratios observed closer to source (0.190±0.010) than in the far-field (0.097±0.002). The difference in ΔOA / ΔCO between fresh and aged plumes is influenced by a change in dominant combustion conditions throughout the campaign. Measurements at source comprised 3 plume interceptions during a single research flight and sampled largely smouldering fires. Twenty-three interceptions were made across four flights in the far-field, with plumes originating from fires occurring earlier in the campaign when fire activity had been more intense, creating an underlying contrast in emissions prior to any transformations associated with aging. Changing combustion conditions also affect the vertical distribution of biomass burning emissions, as aged plumes from more flaming-dominated fires are injected to higher altitudes of up to 6000 m. Proportional contributions of the mass-to-charge ratio (m/z) 60 and 44 peaks in the AMS mass spectra to the total OA mass (denoted f60 and f44) are used as tracers for primary and oxidised BBOA, respectively. f44 is lower on average in near-field plumes than those sampled in the far-field, in accordance with longer aging times as plumes are transported a greater distance from source. However, high levels of ΔO3 / ΔCO and −log(NOx / NOy) close to source indicate that emissions can be subject to very rapid oxidation over short timescales. Conversely, the lofting of plumes into the upper troposphere can lead to the retention of source profiles after transportation over extensive temporal and spatial scales, with f60 also higher on average in aged plumes. Evolution of OA composition with aging is comparable to observations of BB tracers in previous studies, revealing a consistent progression from f60 to f44. The elevated levels of oxygenation in aged plumes, and their association with lower average ΔOA / ΔCO, are consistent with OA loss through evaporation during aging due to a combination of dilution and chemical processing, while differences in combustion conditions throughout the campaign also have a significant influence on BBOA production and composition.


2022 ◽  
Author(s):  
Petri Varvia ◽  
Lauri Korhonen ◽  
André Bruguière ◽  
Janne Toivonen ◽  
Petteri Packalen ◽  
...  

Spaceborne lidar sensors have potential to improve the accuracy of forest above-ground biomass (AGB) estimates by providing direct measurements of 3D structure of forests over large spatial scales. The ICESat-2 (Ice, Cloud and land Elevation Satellite 2), launched in 2018, provides a good coverage of the boreal forest zone and has been previously shown to provide good estimates of forest canopy height and AGB. However, spaceborne lidar data are affected by various conditions, such as presence of snow, solar noise, and in the case of ICESat-2, the power difference between the so-called strong and weak beams. The aim of this study was to explore the effects of these conditions on the performance of AGB modeling using ICESat-2 photon data in a boreal forest area. The framework of the study is multiphase modeling, where AGB field data and wall-to-wall airborne laser scanning (ALS) data are used to produce proxy ALS plots on ICESat-2 track positions. Models between the ALS-predicted AGB and the ICESat-2 photon data are then formulated and evaluated by subsets, such as only strong beam data captured in snowy conditions.Our results indicate that, if possible, strong beam night data from snowless conditions should be used in AGB estimation, because our models showed clearly smallest RMSE (27.0%) for this data subset. If more data are needed, we recommend using only strong beam data and constructing separate models for the different data subsets. In the order of increasing RMSE\%, the next best options were snow/night/strong (30.5%), snow/day/strong (33.6%), and snowless/day/strong (34.2%). Weak beam data from snowy night conditions could also be used if necessary (31.1%).


2017 ◽  
Vol 10 (9) ◽  
pp. 3345-3358 ◽  
Author(s):  
Stephen Conley ◽  
Ian Faloona ◽  
Shobhit Mehrotra ◽  
Maxime Suard ◽  
Donald H. Lenschow ◽  
...  

Abstract. Airborne estimates of greenhouse gas emissions are becoming more prevalent with the advent of rapid commercial development of trace gas instrumentation featuring increased measurement accuracy, precision, and frequency, and the swelling interest in the verification of current emission inventories. Multiple airborne studies have indicated that emission inventories may underestimate some hydrocarbon emission sources in US oil- and gas-producing basins. Consequently, a proper assessment of the accuracy of these airborne methods is crucial to interpreting the meaning of such discrepancies. We present a new method of sampling surface sources of any trace gas for which fast and precise measurements can be made and apply it to methane, ethane, and carbon dioxide on spatial scales of  ∼ 1000 m, where consecutive loops are flown around a targeted source region at multiple altitudes. Using Reynolds decomposition for the scalar concentrations, along with Gauss's theorem, we show that the method accurately accounts for the smaller-scale turbulent dispersion of the local plume, which is often ignored in other average mass balance methods. With the help of large eddy simulations (LES) we further show how the circling radius can be optimized for the micrometeorological conditions encountered during any flight. Furthermore, by sampling controlled releases of methane and ethane on the ground we can ascertain that the accuracy of the method, in appropriate meteorological conditions, is often better than 10 %, with limits of detection below 5 kg h−1 for both methane and ethane. Because of the FAA-mandated minimum flight safe altitude of 150 m, placement of the aircraft is critical to preventing a large portion of the emission plume from flowing underneath the lowest aircraft sampling altitude, which is generally the leading source of uncertainty in these measurements. Finally, we show how the accuracy of the method is strongly dependent on the number of sampling loops and/or time spent sampling the source plume.


2017 ◽  
Author(s):  
Stephen Conley ◽  
Ian Faloona ◽  
Shobhit Mehrotra ◽  
Maxime Suard ◽  
Donald H. Lenschow ◽  
...  

Abstract. Airborne estimates of greenhouse gas emissions are becoming more prevalent with the advent of rapid commercial development of trace gas instrumentation featuring increased measurement accuracy, precision, and frequency, and the swelling interest in the verification of current emission inventories. Multiple airborne studies have indicated that emission inventories may underestimate some hydrocarbon emission sources in U.S. oil and gas producing basins. Consequently, a proper assessment of the accuracy of these airborne methods is crucial to interpreting the meaning of such discrepancies. We present a new method of sampling surface sources of any trace gas for which fast and precise measurements can be made and apply it to methane, ethane, and carbon dioxide on spatial scales of ~ 1000 m, where consecutive loops are flown around a targeted source region at multiple altitudes. Using Reynolds decomposition for the scalar concentrations, along with Gauss's Theorem, we show that the method accurately accounts for the smaller scale turbulent dispersion of the local plume, which is often ignored in other average mass balance methods. With the help of large eddy simulations (LES) we further show how the circling radius can be optimized for the micrometeorological conditions encountered during any flight. Furthermore, by sampling controlled releases of methane and ethane on the ground we can ascertain that the accuracy of the method, in appropriate meteorological conditions, is better than 20 %, with limits of detection below 5 kg hr−1 for both methane and ethane. Because of the FAA mandated minimum flight safe altitude of 150 m, placement of the aircraft is critical to preventing a large portion of the emission plume from flowing underneath the lowest aircraft sampling altitude, which is generally the leading source of uncertainty in these measurements. Finally, we show how the accuracy of the method is strongly dependent on the number of sampling loops, or time spent sampling the source plume.


2003 ◽  
Vol 79 (1) ◽  
pp. 132-146 ◽  
Author(s):  
Dennis Yemshanov ◽  
Ajith H Perera

We reviewed the published knowledge on forest succession in the North American boreal biome for its applicability in modelling forest cover change over large extents. At broader scales, forest succession can be viewed as forest cover change over time. Quantitative case studies of forest succession in peer-reviewed literature are reliable sources of information about changes in forest canopy composition. We reviewed the following aspects of forest succession in literature: disturbances; pathways of post-disturbance forest cover change; timing of successional steps; probabilities of post-disturbance forest cover change, and effects of geographic location and ecological site conditions on forest cover change. The results from studies in the literature, which were mostly based on sample plot observations, appeared to be sufficient to describe boreal forest cover change as a generalized discrete-state transition process, with the discrete states denoted by tree species dominance. In this paper, we outline an approach for incorporating published knowledge on forest succession into stochastic simulation models of boreal forest cover change in a standardized manner. We found that the lack of details in the literature on long-term forest succession, particularly on the influence of pre-disturbance forest cover composition, may be limiting factors in parameterizing simulation models. We suggest that the simulation models based on published information can provide a good foundation as null models, which can be further calibrated as detailed quantitative information on forest cover change becomes available. Key words: probabilistic model, transition matrix, boreal biome, landscape ecology


Sign in / Sign up

Export Citation Format

Share Document