scholarly journals Differences between the QBO in the first and in the second half of the ERA-40 reanalysis

2006 ◽  
Vol 6 (5) ◽  
pp. 9259-9271 ◽  
Author(s):  
H. J. Punge ◽  
M. A. Giorgetta

Abstract. The representation of the quasi-biennial oscillation (QBO) is investigated in the ERA-40 reanalysis. In the lower stratosphere, where there is a good number of observations, the representation of the QBO is equally well throughout the record. However, strong differences between the first and the second half of the zonal wind data set are found in the upper stratosphere, with a typical offset of −10 m/s in the equatorial zonal wind in the earlier part versus the later part of the ERA-40 data set. The strength of the QBO is also affected. Possible explanations are discussed. The identified change of the assimilated wind profiles over time in ERA-40 requires a careful use of equatorial upper stratospheric winds from the reanalysis for validation purposes.

2007 ◽  
Vol 7 (3) ◽  
pp. 599-608 ◽  
Author(s):  
H. J. Punge ◽  
M. A. Giorgetta

Abstract. The representation of the quasi-biennial oscillation (QBO) is investigated in the ERA-40 reanalysis. In the lower stratosphere, where there are a reasonable number of observations, the representation of the QBO is equally good throughout the record. However, strong differences between the first and the second half of the zonal wind data set are found in the upper stratosphere, with a typical offset of –10 m/s in the equatorial zonal wind in the earlier part versus the later part of the ERA-40 record. At the same time, the strength of the QBO is similar. The 7-year running means of zonal wind, wind shear and temperature reveal interesting structures with major changes occuring in the beginning and the middle of the 1980s. Possible explanations are discussed. The identified change of the reanalysed wind profiles over time in ERA-40 demands for a careful use of equatorial upper stratospheric winds from the reanalysis e.g.~for model validation purposes.


2007 ◽  
Vol 25 (1) ◽  
pp. 37-45 ◽  
Author(s):  
H. G. Mayr ◽  
J. G. Mengel ◽  
F. T. Huang ◽  
E. R. Nash

Abstract. An analysis is presented of the stratospheric zonal wind and temperature variations supplied by the National Center for Environmental Prediction (NCEP). The derived zonal-mean variations are employed. Stimulated by modeling studies, the data are separated into the hemispherically symmetric and anti-symmetric components, and spectral analysis is applied to study the 12-month annual oscillation (AO) and the quasi-biennial oscillation (QBO). For data samples that cover as much as 40 years, the zonal wind results reveal a pronounced 5-year modulation of the symmetric AO in the lower stratosphere, which is confined to equatorial latitudes. This modulation is also seen in the temperature variations but extends to high latitudes, qualitatively consistent with published model results. A comparison between different time intervals of the data indicates that the signature of the 5-year oscillation is larger when the QBO of 30 months is more pronounced. Thus there is circumstantial evidence that this particular QBO period is involved in generating the oscillation as was shown in a modeling study (Mayr et al., 2000). In agreement with the model, the spectral analysis also reveals a weak anti-symmetric 5-year oscillation in the zonal wind data, which could interact with the strong anti-symmetric AO to produce the modulation of the symmetric AO. The 30-month QBO is well suited to be synchronized by, and phase-locked to, the equatorial semi-annual oscillation (SAO), and this may explain why this QBO periodicity and its 5-year spin-off are observed to persist for many cycles.


2012 ◽  
Vol 69 (5) ◽  
pp. 1713-1733 ◽  
Author(s):  
Chaim I. Garfinkel ◽  
Tiffany A. Shaw ◽  
Dennis L. Hartmann ◽  
Darryn W. Waugh

Abstract Idealized experiments with the Whole Atmosphere Community Climate Model (WACCM) are used to explore the mechanism(s) whereby the stratospheric quasi-biennial oscillation (QBO) modulates the Northern Hemisphere wintertime stratospheric polar vortex. Overall, the effect of the critical line emphasized in the Holton–Tan mechanism is less important than the effect of the mean meridional circulation associated with QBO winds for the polar response to the QBO. More specifically, the introduction of easterly winds at the equator near 50 hPa 1) causes enhanced synoptic-scale Eliassen–Palm flux (EPF) convergence in the subtropics from 150 to 50 hPa, which leads to the subtropical critical line moving poleward in the lower stratosphere, and 2) creates a barrier to planetary wave propagation from subpolar latitudes to midlatitudes in the middle and upper stratosphere (e.g., less equatorward EPF near 50°N), which leads to enhanced planetary wave convergence in the polar vortex region. These two effects are mechanistically distinct; while the former is related to the subtropical critical line, the latter is due to the mean meridional circulation of the QBO. All of these effects are consistent with linear theory, although the evolution of the entire wind distribution is only quasi-linear because induced zonal wind changes cause the wave driving to shift and thereby positively feed back on the zonal wind changes. Finally, downward propagation of the QBO in the equatorial stratosphere, upper stratospheric equatorial zonal wind, and changes in the tropospheric circulation appear to be less important than lower stratospheric easterlies for the polar stratospheric response. Overall, an easterly QBO wind anomaly in the lower stratosphere leads to a weakened stratospheric polar vortex, in agreement with previous studies, although not because of changes in the subtropical critical line.


2017 ◽  
Vol 30 (17) ◽  
pp. 6977-6997 ◽  
Author(s):  
Hiroaki Naoe ◽  
Makoto Deushi ◽  
Kohei Yoshida ◽  
Kiyotaka Shibata

The future quasi-biennial oscillation (QBO) in ozone in the equatorial stratosphere is examined by analyzing transient climate simulations due to increasing greenhouse gases (GHGs) and decreasing ozone-depleting substances under the auspices of the Chemistry–Climate Model Initiative. The future (1960–2100) and historical (1979–2010) simulations are conducted with the Meteorological Research Institute Earth System Model. Three climate periods, 1960–85 (past), 1990–2020 (present), and 2040–70 (future) are selected, corresponding to the periods before, during, and after ozone depletion. The future ozone QBO is characterized by increases in amplitude by 15%–30% at 5–10 hPa and decreases by 20%–30% at 40 hPa, compared with the past and present climates; the future and present ozone QBOs increase in amplitude by up to 60% at 70 hPa, compared with the past climate. The increased amplitude at 5–10 hPa suggests that the temperature-dependent photochemistry plays an important role in the enhanced future ozone QBO. The weakening of vertical shear in the zonal wind QBO is responsible for the decreased amplitude at 40 hPa in the future ozone QBO. An interesting finding is that the weakened zonal wind QBO in the lowermost tropical stratosphere is accompanied by amplified QBOs in ozone, vertical velocity, and temperature. Further study is needed to elucidate the causality of amplification about the ozone and temperature QBOs under climate change in conditions of zonal wind QBO weakening.


1985 ◽  
Vol 113 (8) ◽  
pp. 1421-1424 ◽  
Author(s):  
B. K. Mukherjee ◽  
K. Indira ◽  
R. S. Reddy ◽  
Bh V. Ramana Murty

2014 ◽  
Vol 7 (4) ◽  
pp. 5087-5139 ◽  
Author(s):  
R. Pommrich ◽  
R. Müller ◽  
J.-U. Grooß ◽  
P. Konopka ◽  
F. Ploeger ◽  
...  

Abstract. Variations in the mixing ratio of trace gases of tropospheric origin entering the stratosphere in the tropics are of interest for assessing both troposphere to stratosphere transport fluxes in the tropics and the impact of these transport fluxes on the composition of the tropical lower stratosphere. Anomaly patterns of carbon monoxide (CO) and long-lived tracers in the lower tropical stratosphere allow conclusions about the rate and the variability of tropical upwelling to be drawn. Here, we present a simplified chemistry scheme for the Chemical Lagrangian Model of the Stratosphere (CLaMS) for the simulation, at comparatively low numerical cost, of CO, ozone, and long-lived trace substances (CH4, N2O, CCl3F (CFC-11), CCl2F2 (CFC-12), and CO2) in the lower tropical stratosphere. For the long-lived trace substances, the boundary conditions at the surface are prescribed based on ground-based measurements in the lowest model level. The boundary condition for CO in the free troposphere is deduced from MOPITT measurements (at ≈ 700–200 hPa). Due to the lack of a specific representation of mixing and convective uplift in the troposphere in this model version, enhanced CO values, in particular those resulting from convective outflow are underestimated. However, in the tropical tropopause layer and the lower tropical stratosphere, there is relatively good agreement of simulated CO with in-situ measurements (with the exception of the TROCCINOX campaign, where CO in the simulation is biased low ≈ 10–20 ppbv). Further, the model results are of sufficient quality to describe large scale anomaly patterns of CO in the lower stratosphere. In particular, the zonally averaged tropical CO anomaly patterns (the so called "tape recorder" patterns) simulated by this model version of CLaMS are in good agreement with observations. The simulations show a too rapid upwelling compared to observations as a consequence of the overestimated vertical velocities in the ERA-interim reanalysis data set. Moreover, the simulated tropical anomaly patterns of N2O are in good agreement with observations. In the simulations, anomaly patterns for CH4 and CFC-11 were found to be consistent with those of N2O; for all long-lived tracers, positive anomalies are simulated because of the enhanced tropical upwelling in the easterly phase of the quasi-biennial oscillation.


2011 ◽  
Vol 68 (6) ◽  
pp. 1273-1289 ◽  
Author(s):  
Chaim I. Garfinkel ◽  
Dennis L. Hartmann

Abstract A dry primitive equation model is used to explain how the quasi-biennial oscillation (QBO) of the tropical stratosphere can influence the troposphere, even in the absence of tropical convection anomalies and a variable stratospheric polar vortex. QBO momentum anomalies induce a meridional circulation to maintain thermal wind balance. This circulation includes zonal wind anomalies that extend from the equatorial stratosphere into the subtropical troposphere. In the presence of extratropical eddies, the zonal wind anomalies are intensified and extend downward to the surface. The tropospheric response differs qualitatively between integrations in which the subtropical jet is strong and integrations in which the subtropical jet is weak. While fluctuation–dissipation theory provides a guide to predicting the response in some cases, significant nonlinearity in others, particularly those designed to model the midwinter subtropical jet of the North Pacific, prevents its universal application. When the extratropical circulation is made zonally asymmetric, the response to the QBO is greatest in the exit region of the subtropical jet. The dry model is able to simulate much of the Northern Hemisphere wintertime tropospheric response to the QBO observed in reanalysis datasets and in long time integrations of the Whole Atmosphere Community Climate Model (WACCM).


2016 ◽  
Author(s):  
G. Karthick Kumar Reddy ◽  
T. K. Ramkumar ◽  
S. Venkatramana Reddy

Abstract. Using six Global Positioning System (GPS) Radio Occultation (RO) satellites (SAC-C, METOP-A and COSMIC/FORMOSAT-3, CNOFS, GRACE and TerraSAR-X) determined height profiles (1–40 km) of atmospheric temperature over the Indian tropical station of Gadanki and the European Center for Medium Range Weather Forecast (ECMWF) Interim Reanalyses (ERA-Interim) zonal wind and temperature data for four years (2009–2012), the present work reports that the tropospheric Subtropical Westerly Jet (SWJ) and the Midlatitude Stratospheric Westerly Jet (MStWJ) play important roles in controlling differently the vertical propagation of tropical Intra Seasonal Oscillations (ISO) with different period bands from the troposphere up to the stratosphere during Northern winters. In the months of December–May (Northern winter to summer, NWTS) of all these years, there is significant 10–20 day and 20–40 day oscillations in the troposphere up to the height of 13 km and above this it reappears at all heights above 21 km. The 40–80 day oscillation also shows similar characteristics except that it almost disappeared during NWTS months of the year 2010–2011 in the stratosphere. The absence of these signals in the intervening heights of ~ 17–20 km is explained on the basis that these two bands actually propagate from the tropical to subtropical region near the tropopause and then reappears in the tropical stratosphere after refracted by the subtropical westerly jet. The poleward and equatorward propagation of these bands in the troposphere and stratosphere respectively are found using the ERA-interim data. Further the two longer period bands of ISO show strong quasi-biennial oscillation in the lower atmosphere with opposite phases (when one band shows maximum the other one shows minimum in a particular year) between these two bands. It is also observed that the phase of the tropical stratospheric Quasi Biennial Oscillation (QBO) has significant control on the strength of the Mid latitude stratospheric westerly jet (MStWJ) that in turn controls the refraction of the tropical tropospheric longer (40–80 days, Longer period ISO; LISO) but not the smaller periods of ISO (SISO) back to the tropical stratosphere. In accordance with earlier theoretical modelling studies, the westerly phase of the lower stratospheric QBO occurred during NWTS months of 2010–2011 over the Indian longitudinal sector causes severe disruption of the MStWJ at 30 km height. This disruption caused the prevention of refraction back again to the tropical stratosphere of significant tropospheric LISO that arrived from the tropics through the tropopause. Further, in these four years, it is observed no direct vertical propagation of tropical tropospheric ISO to the stratosphere. The interannual variations in the tropical stratospheric LISO are related strongly to the phase of the equatorial lower stratospheric QBO in zonal wind and the strength of the MStWJ.


Sign in / Sign up

Export Citation Format

Share Document