scholarly journals Validation of 525 nm and 1020 nm aerosol extinction profiles derived from ACE imager data: comparisons with GOMOS, SAGE II, SAGE III, POAM III, and OSIRIS

2007 ◽  
Vol 7 (4) ◽  
pp. 12349-12379
Author(s):  
F. Vanhellemont ◽  
C. Tetard ◽  
A. Bourassa ◽  
M. Fromm ◽  
J. Dodion ◽  
...  

Abstract. The Canadian ACE (Atmospheric Chemistry Experiment) mission is dedicated to the retrieval of a large number of atmospheric trace gas species using the solar occultation technique in the infrared and UV/visible spectral domain. However, two additional solar disk imagers (at 525 nm and 1020 nm) were added for a number of reasons, including the retrieval of aerosol and cloud products. In this paper, we present the first validation results for these imager aerosol/cloud optical extinction coefficient profiles, by intercomparison with profiles derived from measurements performed by 3 solar occultation instruments (SAGE II, SAGE III, POAM III), one stellar occultation instrument (GOMOS) and one limb sounder (OSIRIS). The results indicate that the ACE imager profiles are of good quality in the upper troposphere/lower stratosphere, although the aerosol extinction for the visible channel at 525 nm contains a significant negative bias at higher altitudes, while the profiles are systematically too high at 1020 nm. Both problems are probably related to ACE imager instrumental issues.

2008 ◽  
Vol 8 (7) ◽  
pp. 2027-2037 ◽  
Author(s):  
F. Vanhellemont ◽  
C. Tetard ◽  
A. Bourassa ◽  
M. Fromm ◽  
J. Dodion ◽  
...  

Abstract. The Canadian ACE (Atmospheric Chemistry Experiment) mission is dedicated to the retrieval of a large number of atmospheric trace gas species using the solar occultation technique in the infrared and UV/visible spectral domain. However, two additional solar disk imagers (at 525 nm and 1020 nm) were added for a number of reasons, including the retrieval of aerosol and cloud products. In this paper, we present first comparison results for these imager aerosol/cloud optical extinction coefficient profiles, with the ones derived from measurements performed by 3 solar occultation instruments (SAGE II, SAGE III, POAM III), one stellar occultation instrument (GOMOS) and one limb sounder (OSIRIS). The results indicate that the ACE imager profiles are of good quality in the upper troposphere/lower stratosphere, although the aerosol extinction for the visible channel at 525 nm contains a significant negative bias at higher altitudes, while the relative differences indicate that ACE profiles are almost always too high at 1020 nm. Both problems are probably related to ACE imager instrumental issues.


2007 ◽  
Vol 7 (6) ◽  
pp. 17975-18014 ◽  
Author(s):  
M. De Mazière ◽  
C. Vigouroux ◽  
P. F. Bernath ◽  
P. Baron ◽  
T. Blumenstock ◽  
...  

Abstract. The ACE-FTS (Atmospheric Chemistry Experiment – Fourier Transform Spectrometer) solar occultation instrument that was launched onboard the Canadian SCISAT-1 satellite in August 2003 is measuring vertical profiles from the upper troposphere to the lower mesosphere for a large number of atmospheric constituents. Methane is one of the key species. The version v2.2 data of the ACE-FTS CH4 data have been compared to correlative satellite, balloon-borne and ground-based Fourier transform infrared remote sensing data to assess their quality. The comparison results indicate that the accuracy of the data is within 10% in the upper troposphere – lower stratosphere, and within 25% in the middle and higher stratosphere up to the lower mesosphere (<60 km). The observed differences are generally consistent with reported systematic uncertainties. ACE-FTS is also shown to reproduce the variability of methane in the stratosphere and lower mesosphere.


2014 ◽  
Vol 56 ◽  
Author(s):  
Claire Waymark ◽  
Kaley Walker ◽  
Chris D. Boone ◽  
Peter F. Bernath

On 12 August 2003, the Canadian-led Atmospheric Chemistry Experiment (ACE) was launched into a 74° inclination orbit at 650 km with the mission objective to measure atmospheric composition using infrared and UV-visible spectroscopy (Bernath et al. 2005). The ACE mission consists of two main instruments, ACE-FTS and MAESTRO (McElroy et al. 2007), which are being used to investigate the chemistry and dynamics of the Earth’s atmosphere.  Here, we focus on the high resolution (0.02 cm-1) infrared Fourier Transform Spectrometer, ACE-FTS, that measures in the 750-4400 cm-1 (2.2 to 13.3 µm) spectral region.  This instrument has been making regular solar occultation observations for more than nine years.  The current ACE-FTS data version (version 3.0) provides profiles of temperature and volume mixing ratios (VMRs) of more than 30 atmospheric trace gas species, as well as 20 subsidiary isotopologues of the most abundant trace atmospheric constituents over a latitude range of ~85°N to ~85°S.  This letter describes the current data version and recent validation comparisons and provides a description of our planned updates for the ACE-FTS data set. [...]


2008 ◽  
Vol 8 (9) ◽  
pp. 2421-2435 ◽  
Author(s):  
M. De Mazière ◽  
C. Vigouroux ◽  
P. F. Bernath ◽  
P. Baron ◽  
T. Blumenstock ◽  
...  

Abstract. The ACE-FTS (Atmospheric Chemistry Experiment – Fourier Transform Spectrometer) solar occultation instrument that was launched onboard the Canadian SCISAT-1 satellite in August 2003 is measuring vertical profiles from the upper troposphere to the lower mesosphere for a large number of atmospheric constituents. Methane is one of the key species. The version v2.2 data of the ACE-FTS CH4 data have been compared to correlative satellite, balloon-borne and ground-based Fourier transform infrared remote sensing data to assess their quality. The comparison results indicate that the accuracy of the data is within 10% in the upper troposphere – lower stratosphere, and within 25% in the middle and higher stratosphere up to the lower mesosphere (<60 km). The observed differences are generally consistent with reported systematic uncertainties. ACE-FTS is also shown to reproduce the variability of methane in the stratosphere and lower mesosphere.


2019 ◽  
Vol 11 (17) ◽  
pp. 1991 ◽  
Author(s):  
Xiaoying Li ◽  
Jian Xu ◽  
Tianhai Cheng ◽  
Hailiang Shi ◽  
Xingying Zhang ◽  
...  

AIUS (Atmospheric Infrared Ultraspectral Sounder) is an infrared occultation spectrometer onboard the Chinese GaoFen-5 satellite, which covers a spectral range of 2.4–13.3 μm (750–4100 cm−1) with a spectral resolution of about 0.02 cm−1. AIUS was designed to measure and to study the chemical processes of ozone (O3) and other trace gases in the upper troposphere and stratosphere over the Antarctic. In this study, the AIUS retrieval methodology is described. A comparison between AIUS measurements and simulated spectra illustrates that AIUS measurements agree well with the simulated spectra. To first evaluate the reliability of the AIUS retrieval algorithm, three retrieval O3 experiments were performed based on ACE-FTS (Atmospheric Chemistry Experiment—Fourier transform spectrometer) observed spectra. A comparison with the ACE-FTS official products shows that the relative difference of these three retrieval experiments was mostly within 10% between 20 and 70 km. These retrieval experiments demonstrate that the retrieval algorithm described in this study provided reliable results and reliably. Furthermore, O3, H2O, and HCl profiles were retrieved from 24 orbits of AIUS measurements and compared with the official Aura /MLS (Microwave Limb Sounder) level-2 v4.2 profiles. The relative difference was mostly within 10% (about 0.02–0.4 ppm) between 18 and 58 km for the O3 retrieval, within 10% (0–0.5 ppm) between 15 and 80 km for the H2O retrieval, and within 10% (about 0.1 ppb) between 30 and 60 km for the HCl retrieval. A good agreement in the retrieved trace gas profiles was reached between AIUS and MLS.


Author(s):  
Xiaoying Li ◽  
Tianhai Cheng ◽  
Jian Xu ◽  
Hailiang Shi ◽  
Xingying Zhang ◽  
...  

AIUS (Atmospheric Infrared Ultraspectral Sounder) is an infrared occultation spectrometer onboard the Chinese GaoFen-5 satellite, which covers a spectral range of 2.4&ndash;13.3 &mu;m (750&ndash;4100 cm&minus;1) with a spectral resolution of about 0.02 cm&minus;1. AIUS is designed to measure and study chemical processes of ozone (O3) and other trace gases in the upper troposphere and stratosphere around Antarctic. In this study, the corresponding retrieval methodology is described. The retrieval simulations based on the simulated spectra of AIUS have been carried out, with a focus on O3. The relative difference between the retrieved and the true O3 profiles is within 5% from the 15 km to 70 km and about 10% below 15 km. The corresponding averaging kernels illustrate that the overall retrieval information mainly come from the spectra, not the a priori. The retrieval experiments also demonstrate that the shape of the retrieved profiles resembles the shape of the true profile even if the shape of the a priori profile is different from that of the true profile. Further, we perform the O3 retrieval from the real ACE-FTS (Atmospheric Chemistry Experiment-Fourier Transform Spectrometer) measurements and compare the results with the official ACE-FTS Level-2 products. Overall, both profiles agree well in the stratosphere where the retrieval sensitivity is high. The relative difference between both profiles is about 15% below 70 km, which may due to the measurement errors and different forward model parameters.


2008 ◽  
Vol 8 (2) ◽  
pp. 4499-4559 ◽  
Author(s):  
M. R. Carleer ◽  
C. D. Boone ◽  
K. A. Walker ◽  
P. F. Bernath ◽  
K. Strong ◽  
...  

Abstract. The Atmospheric Chemistry Experiment (ACE) mission was launched in August 2003 to sound the atmosphere by solar occultation. Water vapour (H2O), one of the most important molecules for climate and atmospheric chemistry, is one of the key species provided by the two principal instruments, the infrared Fourier Transform Spectrometer (ACE-FTS) and the MAESTRO UV-Visible spectrometer (ACE-MAESTRO). The first instrument performs measurements on several lines in the 1362–2137 cm−1 range, from which vertically resolved H2O concentration profiles are retrieved, from 7 to 90 km altitude. ACE-MAESTRO measures profiles using the water absorption band in the near infrared part of the spectrum at 926.0–969.7 nm. This paper presents a comprehensive validation of the ACE-FTS profiles. We have compared the H2O volume mixing ratio profiles with space-borne (SAGE II, HALOE, POAM III, MIPAS, SMR) observations and measurements from balloon-borne frostpoint hygrometers and a ground based lidar. We show that the ACE-FTS measurements provide H2O profiles with small retrieval uncertainties in the stratosphere (better than 5% from 15 to 70 km, gradually increasing above). The situation is unclear in the upper troposphere, due mainly to the high variability of the water vapour volume mixing ratio in this region. A new water vapour data product from the ACE-MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) is also presented and initial comparisons with ACE-FTS are discussed.


2016 ◽  
Vol 16 (18) ◽  
pp. 11521-11534 ◽  
Author(s):  
Luis F. Millán ◽  
Nathaniel J. Livesey ◽  
Michelle L. Santee ◽  
Jessica L. Neu ◽  
Gloria L. Manney ◽  
...  

Abstract. This study investigates the representativeness of two types of orbital sampling applied to stratospheric temperature and trace gas fields. Model fields are sampled using real sampling patterns from the Aura Microwave Limb Sounder (MLS), the HALogen Occultation Experiment (HALOE) and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). The MLS sampling acts as a proxy for a dense uniform sampling pattern typical of limb emission sounders, while HALOE and ACE-FTS represent coarse nonuniform sampling patterns characteristic of solar occultation instruments. First, this study revisits the impact of sampling patterns in terms of the sampling bias, as previous studies have done. Then, it quantifies the impact of different sampling patterns on the estimation of trends and their associated detectability. In general, we find that coarse nonuniform sampling patterns may introduce non-negligible errors in the inferred magnitude of temperature and trace gas trends and necessitate considerably longer records for their definitive detection. Lastly, we explore the impact of these sampling patterns on tropical vertical velocities derived from stratospheric water vapor measurements. We find that coarse nonuniform sampling may lead to a biased depiction of the tropical vertical velocities and, hence, to a biased estimation of the impact of the mechanisms that modulate these velocities. These case studies suggest that dense uniform sampling such as that available from limb emission sounders provides much greater fidelity in detecting signals of stratospheric change (for example, fingerprints of greenhouse gas warming and stratospheric ozone recovery) than coarse nonuniform sampling such as that of solar occultation instruments.


2008 ◽  
Vol 8 (3) ◽  
pp. 505-522 ◽  
Author(s):  
G. L. Manney ◽  
W. H. Daffer ◽  
K. B. Strawbridge ◽  
K. A. Walker ◽  
C. D. Boone ◽  
...  

Abstract. The first three Arctic winters of the ACE mission represented two extremes of winter variability: Stratospheric sudden warmings (SSWs) in 2004 and 2006 were among the strongest, most prolonged on record; 2005 was a record cold winter. Canadian Arctic Atmospheric Chemistry Experiment (ACE) Validation Campaigns were conducted at Eureka (80° N, 86° W) during each of these winters. New satellite measurements from ACE-Fourier Transform Spectrometer (ACE-FTS), Sounding of the Atmosphere using Broadband Emission Radiometry (SABER), and Aura Microwave Limb Sounder (MLS), along with meteorological analyses and Eureka lidar temperatures, are used to detail the meteorology in these winters, to demonstrate its influence on transport, and to provide a context for interpretation of ACE-FTS and validation campaign observations. During the 2004 and 2006 SSWs, the vortex broke down throughout the stratosphere, reformed quickly in the upper stratosphere, and remained weak in the middle and lower stratosphere. The stratopause reformed at very high altitude, near 75 km. ACE measurements covered both vortex and extra-vortex conditions in each winter, except in late-February through mid-March 2004 and 2006, when the strong, pole-centered vortex that reformed after the SSWs resulted in ACE sampling only inside the vortex in the middle through upper stratosphere. The 2004 and 2006 Eureka campaigns were during the recovery from the SSWs, with the redeveloping vortex over Eureka. 2005 was the coldest winter on record in the lower stratosphere, but with an early final warming in mid-March. The vortex was over Eureka at the start of the 2005 campaign, but moved away as it broke up. Disparate temperature profile structure and vortex evolution resulted in much lower (higher) temperatures in the upper (lower) stratosphere in 2004 and 2006 than in 2005. Satellite temperatures agree well with lidar data up to 50–60 km, and ACE-FTS, MLS and SABER show good agreement in high-latitude temperatures throughout the winters. Consistent with a strong, cold upper stratospheric vortex and enhanced radiative cooling after the SSWs, MLS and ACE-FTS trace gas measurements show strongly enhanced descent in the upper stratospheric vortex in late January through March 2006 compared to that in 2005.


2015 ◽  
Vol 8 (12) ◽  
pp. 5251-5261 ◽  
Author(s):  
A. Laeng ◽  
J. Plieninger ◽  
T. von Clarmann ◽  
U. Grabowski ◽  
G. Stiller ◽  
...  

Abstract. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is an infrared (IR) limb emission spectrometer on the Envisat platform. It measures trace gas distributions during day and night, pole-to-pole, over an altitude range from 6 to 70 km in nominal mode and up to 170 km in special modes, depending on the measurement mode, producing more than 1000 profiles day−1. We present the results of a validation study of methane, version V5R_CH4_222, retrieved with the IMK/IAA (Institut für Meteorologie und Klimaforschung, Karlsruhe/Instituto de Astrofisica de Andalucia, Grenada) MIPAS scientific level 2 processor. The level 1 spectra are provided by the ESA (European Space Agency) and version 5 was used. The time period covered is 2005–2012, which corresponds to the period when MIPAS measured trace gas distributions at a reduced spectral resolution of 0.0625 cm−1. The comparison with satellite instruments includes the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), the HALogen Occultation Experiment (HALOE), the Solar Occultation For Ice Experiment (SOFIE) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). Furthermore, comparisons with MkIV balloon-borne solar occultation measurements and with air sampling measurements performed by the University of Frankfurt are presented. The validation activities include bias determination, assessment of stability, precision validation, analysis of histograms and comparison of corresponding climatologies. Above 50 km altitude, MIPAS methane mixing ratios agree within 3 % with ACE-FTS and SOFIE. Between 30 and 40 km an agreement within 3 % with SCIAMACHY has been found. In the middle stratosphere, there is no clear indication of a MIPAS bias since comparisons with various instruments contradict each other. In the lower stratosphere (below 25 km) MIPAS CH4 is biased high with respect to satellite instruments, and the most likely estimate of this bias is 14 %. However, in the comparison with CH4 data obtained from cryogenic whole-air sampler (cryosampler) measurements, there is no evidence of a high bias in MIPAS between 20 and 25 km altitude. Precision validation is performed on collocated MIPAS–MIPAS pairs and suggests a slight underestimation of its uncertainties by a factor of 1.2. No significant evidence of an instrumental drift has been found.


Sign in / Sign up

Export Citation Format

Share Document