scholarly journals Regional-scale modeling of near-ground ozone in the Central East China, source attributions and an assessment of outflow to East Asia – The role of regional-scale transport during MTX2006

2008 ◽  
Vol 8 (4) ◽  
pp. 13159-13195 ◽  
Author(s):  
J. Li ◽  
Z. Wang ◽  
H. Akimoto ◽  
K. Yamaji ◽  
M. Takigawa ◽  
...  

Abstract. A 3-D regional chemical transport model, the Nested Air Quality Prediction Model System (NAQPMS), with an on-line tracer tagging module was applied to study the source of the near-ground (<1.5 km above ground level) ozone at Mt. Tai (36.25°N, 117.10°E, 1534 m a.s.l.) in Central East China (CEC) during the Mount Tai eXperiment 2006 (MTX2006): regional ozone photochemistry and aerosol studies in Central East China in June, 2006. The model reproduced the temporal and spatial variations of near-ground ozone and other pollutants. In particular, the model captured highly polluted and clean cases well. The simulated near-ground ozone over CEC is 60–85 ppbv (parts per billion by volume), higher than those (20–50 ppbv) in Japan and over the North Pacific. The simulated tagged tracer indicates that the regional-scale transport of chemically produced ozone over other areas in CEC contributes to the most fractions (49%) of the near-ground mean ozone at Mt. Tai in June, rather than the in-situ photochemistry (12%). Due to high anthropogenic and biomass burning emissions, the contributions of the ground ozone from the southern part of CEC plays the most important role (32.4 ppbv, 37.9% of total ozone) in the monthly mean ozone concentration at Mt. Tai, which even reached 59 ppbv (62%) on 6–7 June 2006. The monthly mean horizontal distribution of chemically produced ozone from various source regions indicates that the spatial distribution of O3 over CEC is controlled by the photochemical reactions. In addition, the regional-scale transport of pollutants also plays an important role in the spatial and temporal distribution of ozone over CEC. The chemically produced ozone from the southern part of the study region can be transported northeastwardly to the northern rim of CEC. The mean contribution is 5–10 ppbv, and it can reach 25 ppbv during high ozone events. This work also studied the outflow of CEC ozone and its precursors, as well as their influences and contributions to the ozone level over adjacent regions/countries. It shows that the contribution of CEC ozone to mean ozone mixing ratios over Korea Peninsula and Japan is 5–15 ppbv, of which about half was due to the direct transport of ozone from CEC and half was contributed by the ozone produced locally by the transported ozone precursors from CEC.

2008 ◽  
Vol 8 (24) ◽  
pp. 7335-7351 ◽  
Author(s):  
J. Li ◽  
Z. Wang ◽  
H. Akimoto ◽  
K. Yamaji ◽  
M. Takigawa ◽  
...  

Abstract. A 3-D regional chemical transport model, the Nested Air Quality Prediction Model System (NAQPMS), with an on-line tracer tagging module was used to study the source of the near-ground (<1.5 km above ground level) ozone at Mt. Tai (36.25° N, 117.10° E, 1534 m a.s.l.) in Central Eastern China (CEC) during the Mount Tai eXperiment 2006 (MTX2006). The model reproduced the temporal and spatial variations of near-ground ozone and other pollutants, and it captured highly polluted and clean cases well. The simulated near-ground ozone level over CEC was 60–85 ppbv (parts per billion by volume), which was higher than values in Japan and over the North Pacific (20–50 ppbv). The simulated tagged tracer data indicated that the regional-scale transport of chemically produced ozone over other areas in CEC contributed to the greatest fraction (49%) of the near-ground mean ozone at Mt. Tai in June; in situ photochemistry contributed only 12%. Due to high anthropogenic and biomass burning emissions that occurred in the southern part of the CEC, the contribution to ground ozone levels from this area played the most important role (32.4 ppbv, 37.9% of total ozone) in the monthly mean ozone concentration at Mt. Tai; values reached 59 ppbv (62%) on 6–7 June 2006. The monthly mean horizontal distribution of chemically produced ozone from various ozone production regions indicated that photochemical reactions controlled the spatial distribution of O3 over CEC. The regional-scale transport of pollutants also played an important role in the spatial and temporal distribution of ozone over CEC. Chemically produced ozone from the southern part of the study region can be transported northeastwardly to the northern rim of CEC; the mean contribution was 5–10 ppbv, and it reached 25 ppbv during high ozone events. Studies of the outflow of CEC ozone and its precursors, as well as their influences and contributions to the ozone level over adjacent regions/countries, revealed that the contribution of CEC ozone to mean ozone mixing ratios over the Korean Peninsula and Japan was 5–15 ppbv, of which about half was due to the direct transport of ozone from CEC and half was produced locally by ozone precursors transported from CEC.


2015 ◽  
Vol 15 (12) ◽  
pp. 17251-17281 ◽  
Author(s):  
J. Xu ◽  
R. V. Martin ◽  
A. van Donkelaar ◽  
J. Kim ◽  
M. Choi ◽  
...  

Abstract. We determine and interpret fine particulate matter (PM2.5) concentrations in East China for January to December 2013 at a horizontal resolution of 6 km from aerosol optical depth (AOD) retrieved from the Korean Geostationary Ocean Color Imager (GOCI) satellite instrument. We implement a set of filters to minimize cloud contamination in GOCI AOD. Evaluation of filtered GOCI AOD with AOD from the Aerosol Robotic Network (AERONET) indicates significant agreement with mean fractional bias (MFB) in Beijing of 6.7 % and northern Taiwan of −1.2 %. We use a global chemical transport model (GEOS-Chem) to relate the total column AOD to the near-surface PM2.5. The simulated PM2.5/AOD ratio exhibits high consistency with ground-based measurements (MFB = −0.52–8.0 %). We evaluate the satellite-derived PM2.5 vs. the ground-level PM2.5 in 2013 measured by the China Environmental Monitoring Center. Significant agreement is found between GOCI-derived PM2.5 and in-situ observations in both annual averages (r = 0.81, N = 494) and monthly averages (MFB = 13.1 %), indicating GOCI provides valuable data for air quality studies in Northeast Asia. The GEOS-Chem simulated chemical speciation of GOCI-derived PM2.5 reveals that secondary inorganics (SO42−, NO3−, NH4+) and organic matter are the most significant components. Biofuel emissions in northern China for heating are responsible for an increase in the concentration of organic matter in winter. The population-weighted GOCI-derived PM2.5 over East China for 2013 is 53.8 μg m−3, threatening the health and life expectancy of its 600 million residents.


2006 ◽  
Vol 6 (6) ◽  
pp. 11181-11207 ◽  
Author(s):  
I. Uno ◽  
Y. He ◽  
T. Ohara ◽  
K. Yamaji ◽  
J.-I. Kurokawa ◽  
...  

Abstract. Systematic analyses of interannual and seasonal variations of tropospheric NO2 vertical column densities (VCDs) based on GOME satellite data and the regional scale chemical transport model (CTM), Community Multi-scale Air Quality (CMAQ), are presented over eastern Asia between 1996 and June 2003. A newly developed year-by-year emission inventory (REAS) was used in CMAQ. The horizontal distribution of annual averaged GOME NO2 VCDs generally agrees well with the CMAQ results. However, CMAQ/REAS results underestimate the GOME retrievals with factors of 2–4 over polluted industrial regions such as Central East China (CEC), a major part of Korea, Hong Kong, and central and western Japan. For the Japan region, GOME and CMAQ NO2 data show good agreement with respect to interannual variation and show no clear increasing trend. For CEC, GOME and CMAQ NO2 data show good agreement and indicate a very rapid increasing trend from 2000. Analyses of the seasonal cycle of NO2 VCDs show that GOME data have systematically larger dips than CMAQ NO2 during February–April and September–November. Sensitivity experiments with fixed emission intensity reveal that the detection of emission trends from satellite in fall or winter have a larger error caused by the variability of meteorology. Examination during summer time and annual averaged NO2 VCDs are robust with respect to variability of meteorology and are therefore more suitable for analyses of emission trends. Analysis of recent trends of annual emissions in China shows that the increasing trends of 1996–1998 and 2000–2002 for GOME and CMAQ/REAS show good agreement, but the rate of increase by GOME is approximately 10–11% yr−1 after 2000; it is slightly steeper than CMAQ/REAS (8–9% yr−1). The greatest difference was apparent between the years 1998 and 2000: CMAQ/REAS only shows a few percentage points of increase, whereas GOME gives a greater than 8% yr−1 increase. The exact reason remains unclear, but the most likely explanation is that the emission trend based on the Chinese emission related statistics underestimates the rapid growth of emissions.


2007 ◽  
Vol 7 (6) ◽  
pp. 1671-1681 ◽  
Author(s):  
I. Uno ◽  
Y. He ◽  
T. Ohara ◽  
K. Yamaji ◽  
J.-I. Kurokawa ◽  
...  

Abstract. Systematic analyses of interannual and seasonal variations of tropospheric NO2 vertical column densities (VCDs) based on GOME satellite data and the regional scale chemical transport model (CTM), Community Multi-scale Air Quality (CMAQ), are presented for the atmosphere over eastern Asia between 1996 and June 2003. A newly developed year-by-year emission inventory (REAS) was used in CMAQ. The horizontal distribution of annual averaged GOME NO2 VCDs generally agrees well with the CMAQ results. However, CMAQ/REAS results underestimate the GOME retrievals with factors of 2–4 over polluted industrial regions such as Central East China (CEC), a major part of Korea, Hong Kong, and central and western Japan. The most probable reasons for the underestimation typically over the CEC are accuracy of the basic energy statistic data, emission factors, and socio-economic data used for construction of emission inventory. For the Japan region, GOME and CMAQ NO2 data show reasonable agreement with respect to interannual variation and show no clear increasing trend. For CEC, GOME and CMAQ NO2 data indicate a very rapid increasing trend from 2000. Analyses of the seasonal cycle of NO2 VCDs show that GOME data have larger dips than CMAQ NO2 during February–April and September–November. Sensitivity experiments with fixed emission intensity reveal that the detection of emission trends from satellite in fall or winter has a larger error caused by the variability of meteorology. Examination during summer time and annual averaged NO2 VCDs are robust with respect to variability of meteorology and are therefore more suitable for analyses of emission trends. Analysis of recent trends of annual emissions in China shows that the increasing trends of 1996–1998 and 2000–2002 for GOME and CMAQ/REAS show good agreement, but the rate of increase by GOME is approximately 10–11% yr−1 after 2000; it is slightly steeper than CMAQ/REAS (8–9% yr−1). The greatest difference was apparent between the years 1998 and 2000: CMAQ/REAS only shows a few percentage points of increase, whereas GOME gives a greater than 8% yr−1 increase. The exact reason remains unclear, but the most likely explanation is that the emission trend based on the Chinese emission related statistics underestimates the rapid growth of emissions.


Author(s):  
Jason Welsh ◽  
Jack Fishman

We use a regional scale photochemical transport model to investigate the surface concentrations and column integrated amounts of ozone (O3) and nitrogen dioxide (NO2) during a pollution event that occurred in the St. Louis metropolitan region in 2012. These trace gases will be two of the primary constituents that will be measured by TEMPO, an instrument on a geostationary platform, which will result in a dataset that has hourly temporal resolution during the daytime and ~4 km spatial resolution. Although air quality managers are most concerned with surface concentrations, satellite measurements provide a quantity that reflects a column amount, which may or may not be directly relatable to what is measured at the surface. The model results provide good agreement with observed surface O3 concentrations, which is the only trace gas dataset that can be used for verification. The model shows that a plume of O3 extends downwind from St. Louis and contains an integrated amount of ozone of ~ 16 DU (1 DU = 2.69 x 1016 mol. cm-2), a quantity that is two to three times lower than what was observed by satellite measurements during two massive pollution episodes in the 1980s. Based on the smaller isolatable emissions coming from St. Louis, this quantity is not unreasonable, but may also reflect the reduction of photochemical ozone production due to the implementation of emission controls that have gone into effect in the past few decades.


2009 ◽  
Vol 9 (14) ◽  
pp. 5281-5297 ◽  
Author(s):  
I. Pison ◽  
P. Bousquet ◽  
F. Chevallier ◽  
S. Szopa ◽  
D. Hauglustaine

Abstract. In order to study the spatial and temporal variations of the emissions of greenhouse gases and of their precursors, we developed a data assimilation system and applied it to infer emissions of CH4, CO and H2 for one year. It is based on an atmospheric chemical transport model and on a simplified scheme for the oxidation chain of hydrocarbons, including methane, formaldehyde, carbon monoxide and molecular hydrogen together with methyl chloroform. The methodology is exposed and a first attempt at evaluating the inverted fluxes is made. Inversions of the emission fluxes of CO, CH4 and H2 and concentrations of HCHO and OH were performed for the year 2004, using surface concentration measurements of CO, CH4, H2 and CH3CCl3 as constraints. Independent data from ship and aircraft measurements and satellite retrievals are used to evaluate the results. The total emitted mass of CO is 30% higher after the inversion, due to increased fluxes by up to 35% in the Northern Hemisphere. The spatial distribution of emissions of CH4 is modified by a decrease of fluxes in boreal areas up to 60%. The comparison between mono- and multi-species inversions shows that the results are close at a global scale but may significantly differ at a regional scale because of the interactions between the various tracers during the inversion.


2018 ◽  
Author(s):  
Lucas Bastien ◽  
Nancy Brown ◽  
Robert Harley

Abstract. Reducing ambient formaldehyde concentrations is a complex task because formaldehyde is both a primary and a secondary air pollutant, with significant anthropogenic and biogenic sources of volatile organic compounds (VOC) precursor emissions. This work uses adjoint sensitivity analysis in a chemical transport model to identify emission sources and chemical reactions that influence formaldehyde mixing ratios in the San Francisco Bay Area, and within three urbanized sub-areas. For each of these receptors, the use of the adjoint technique allows for efficient calculation of the sensitivity of formaldehyde to emissions of NOx, formaldehyde, and VOC precursors occurring at any location and time. Formaldehyde mixing ratios are found to be generally higher in summer than in winter. The opposite seasonal trend is observed for the sensitivities of these mixing ratios to formaldehyde emissions. In other words, even though formaldehyde is higher in summer, reducing formaldehyde emissions has a greater impact in winter. In winter, 85–90 % of the sensitivity to emissions is attributed to direct formaldehyde emissions. In summer, this contribution is smaller and more variable, ranging from 26 to 72 % among the receptor areas investigated in this study. Higher relative contributions of secondary formation versus direct emissions are associated with receptors located farther away from heavily urbanized and emission-rich areas. In particular, the relative contribution of biogenic VOC emissions (15–41 % in summer) is largest for these receptors. Ethene and other alkenes are the most influential anthropogenic precursors to secondary formaldehyde. Isoprene is the most influential biogenic precursor. Sensitivities of formaldehyde to NOx emissions are generally negative, but small in magnitude compared to sensitivities to VOC emissions. The magnitude of anthropogenic emissions of organic compounds other than formaldehyde is found to correlate reasonably well with their influence on population-weighted formaldehyde mixing ratios at the air basin scale. This correlation does not hold for ambient formaldehyde in smaller urbanized sub-areas. The magnitude of biogenic emissions does not correlate with their influence in either case.


2019 ◽  
Author(s):  
Jinwoong Kim ◽  
Saroja Polavarapu ◽  
Douglas Chan ◽  
Michael Neish

Abstract. In this study, we present the development of a regional atmospheric transport model for greenhouse gas (GHG) simulation based on an operational weather forecast model and a chemical transport model at Environment and Climate Change Canada (ECCC), with the goal of improving our understanding of the high spatio-temporal resolution interaction between the atmosphere and surface GHG fluxes over Canada and the United States. The regional model uses 10 km × 10 km horizontal grid spacing and 80 vertical levels spanning the ground to 0.1 hPa. The lateral boundary conditions of meteorology and tracers are provided by the global transport model used for GHG simulation at ECCC. The performance of the regional model and added benefit of the regional model over our lower resolution global models is investigated in terms of modelled CO2 concentration and meteorological forecast quality for multiple seasons in 2015. We find that our regional model has the capability to simulate high spatial (horizontal and vertical) and temporal scales of atmospheric CO2 concentrations, based on comparisons to surface and aircraft observations. In addition, reduced bias and standard deviation of forecast error in boreal summer are obtained by the regional model. Better representation of model topography in the regional model reduces transport and representation errors significantly compared to the global model, especially in regions of complex topography, as revealed by the more precise and detailed structure of the CO2 diurnal cycle produced at observation sites and in model space. The new regional model will form the basis of a flux inversion system that estimates regional scale fluxes of GHGs over Canada.


2018 ◽  
Author(s):  
Maria Teresa Pay ◽  
Gotzon Gangoiti ◽  
Marc Guevara ◽  
Sergey Napelenok ◽  
Xavier Querol ◽  
...  

Abstract. It is well established that in Europe, high O3 concentrations are most pronounced in southern/Mediterranean countries due to the more favorable climatological conditions for its formation. However, the contribution of the different sources of precursors to O3 formation within each country relative to the imported (regional and hemispheric) O3 is poorly quantified. This lack of quantitative knowledge prevents local authorities from effectively designing plans that reduce the exceedances of the O3 Target Value set by the European Air Quality Directive. O3 source attribution is a challenge because the concentration at each location and time results not only from local biogenic and anthropogenic precursors, but also from the transport of O3 and precursors from neighbouring regions, O3 regional and hemispheric transport and stratospheric O3 injections. Our study applies and thoroughly evaluates a countrywide O3 source apportionment method implemented in a Chemical Transport Model (CTM) at high resolution (4 × 4 km) over the Iberian Peninsula (IP) to understand and quantify the origin of peak O3 events over a 10-day period covering the most frequent synoptic summer conditions in the IP. The method tags both O3 and its gas precursor emissions from source sectors within one simulation and each tagged species is subject to the typical physical processes (advection, vertical mixing, deposition, emission and chemistry) as the actual conditions remain unperturbed. We quantify the individual contributions of the largest NOx local sources to high O3 concentrations compared to the contribution of imported O3. We show for the first time that imported O3 is the largest input to the ground-level O3 concentration in the IP, accounting for 46 % to 68 % of the daily mean O3 concentration during exceedances of the European Target Value. The hourly imported O3 increases during typical northwestern advections (70–90 %, 60–80 µg/m3), and decreases during typical stagnant conditions (30–40 %, 30–60 µg/m3) due to the local NO titration effect. During stagnant conditions, the anthropogenic precursors control the O3 peaks in areas downwind of the main urban and industrial regions (up to 40 % in hourly peaks). We also show that ground-level O3 concentrations are strongly affected by vertical mixing of O3-rich layers present in the free troposphere, which result from local/regional layering and accumulation, and continental/hemispheric transport. Indeed, vertical mixing largely explains the presence of imported O3 at ground level in the Iberian Peninsula. Our results demonstrate the need for detailed quantification of the local and remote contributions to high O3 concentrations for local O3 management, being the O3 source apportionment an essential analysis prior to the design of O3 mitigation plans in any non-attainment area. To achieve the European O3 objectives in southern Europe, ad hoc local actions should be complemented by decided national and European-wide strategies.


Sign in / Sign up

Export Citation Format

Share Document