scholarly journals Impact of tropospheric nitrogen dioxide on the regional radiation budget

2009 ◽  
Vol 9 (3) ◽  
pp. 12675-12706 ◽  
Author(s):  
A. P. Vasilkov ◽  
J. Joiner ◽  
L. Oreopoulos ◽  
J. F. Gleason ◽  
P. Veefkind ◽  
...  

Abstract. Following the launch of several satellite ultraviolet and visible spectrometers including the Ozone Monitoring Instrument (OMI), much has been learned about the global distribution of nitrogen dioxide (NO2). NO2, which is mostly anthropogenic in origin, absorbs solar radiation at ultraviolet and visible wavelengths. We parameterized NO2 absorption for fast radiative transfer calculations. Using this parameterization with cloud, surface, and NO2 information from different sensors in the NASA A-train constellation of satellites and NO2 profiles from the Global Modeling Initiative (GMI), we compute the global distribution of net atmospheric heating due to tropospheric NO2 for January and July 2005. We assess the impact of clouds and find that because most of N02 is contained in the boundary layer in polluted regions, the cloud shielding effect can significantly reduce the net atmospheric heating due to NO2. We examine the effect of diurnal variations in NO2 emissions and chemistry on net atmospheric heating and find only a small impact of these on the daily-averaged heating. While the impact of NO2 on the global radiative forcing is small, locally it can produce instantaneous net atmospheric heating of 2–4 W/m2 in heavily polluted areas. We also examine the sensitivity of NO2 absorption to various geophysical conditions. Effects of the vertical distributions of cloud optical depth and NO2 on net atmospheric heating and downwelling radiance are simulated in detail for various scenarios including vertically-inhomogeneous convective clouds observed by CloudSat. The maximum effect of NO2 on downwelling radiance occurs when the NO2 is located in the middle part of the cloud where the optical extinction peaks.

2009 ◽  
Vol 9 (17) ◽  
pp. 6389-6400 ◽  
Author(s):  
A. P. Vasilkov ◽  
J. Joiner ◽  
L. Oreopoulos ◽  
J. F. Gleason ◽  
P. Veefkind ◽  
...  

Abstract. Following the launch of several satellite ultraviolet and visible spectrometers including the Ozone Monitoring Instrument (OMI), much has been learned about the global distribution of nitrogen dioxide (NO2). NO2, which is mostly anthropogenic in origin, absorbs solar radiation at ultraviolet and visible wavelengths. We parameterized NO2 absorption for fast radiative transfer calculations. Using this parameterization with cloud, surface, and NO2 information from different sensors in the NASA A-train constellation of satellites and NO2 profiles from the Global Modeling Initiative (GMI), we compute the global distribution of net atmospheric heating (NAH) due to tropospheric NO2 for January and July 2005. The globally-averaged NAH values due to tropospheric NO2 are very low: they are about 0.05 W/m2. While the impact of NO2 on the global radiative forcing is small, locally it can produce instantaneous net atmospheric heating of 2–4 W/m2 in heavily polluted areas. We assess the impact of clouds and find that they reduce the globally-averaged NAH values by 5–6% only. However, because most of NO2 is contained in the boundary layer in polluted regions, the cloud shielding effect can significantly reduce the net atmospheric heating due to tropospheric NO2 (up to 50%). We examine the effect of diurnal variations in NO2 emissions and chemistry on net atmospheric heating and find only a small impact of these on the daily-averaged heating (11–14% at the most). We also examine the sensitivity of NO2 absorption to various geophysical conditions. Effects of the vertical distributions of cloud optical depth and NO2 on net atmospheric heating and downwelling radiance are simulated in detail for various scenarios including vertically-inhomogeneous convective clouds observed by CloudSat. The maximum effect of NO2 on downwelling radiance occurs when the NO2 is located in the middle part of the cloud where the optical extinction peaks.


2014 ◽  
Vol 14 (16) ◽  
pp. 22985-23025
Author(s):  
M. Righi ◽  
J. Hendricks ◽  
R. Sausen

Abstract. Using the EMAC global climate-chemistry model coupled to the aerosol module MADE, we simulate the impact of land transport and shipping emissions on global atmospheric aerosol and climate in 2030. Future emissions of short-lived gas and aerosol species follow the four Representative Concentration Pathways (RCPs) designed in support of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We compare the resulting 2030 land-transport- and shipping-induced aerosol concentrations to the ones obtained for the year 2000 in a previous study with the same model configuration. The simulations suggest that black carbon and aerosol nitrate are the most relevant pollutants from land transport in 2000 and 2030, but their impacts are characterized by very strong regional variations during this time period. Europe and North America experience a decrease in the land-transport-induced particle pollution, although in these regions this sector remains the dominant source of surface-level pollution in 2030 under all RCPs. In Southeast Asia, on the other hand, a significant increase is simulated, but in this region the surface-level pollution is still controlled by other sources than land transport. Shipping-induced air pollution is mostly due to aerosol sulfate and nitrate, which show opposite trends towards 2030. Sulfate is strongly reduced as a consequence of sulfur reduction policies in ship-fuels in force since 2010, while nitrate tends to increase due to the excess of ammonia following the reduction in ammonium-sulfate. The aerosol-induced climate impact of both sectors is dominated by aerosol-cloud effects and is projected to decrease between 2000 and 2030, nevertheless still contributing a significant radiative forcing to the Earth's radiation budget.


2009 ◽  
Vol 9 (2) ◽  
pp. 5505-5547 ◽  
Author(s):  
J. Joiner ◽  
M. R. Schoeberl ◽  
A. P. Vasilkov ◽  
L. Oreopoulos ◽  
S. Platnick ◽  
...  

Abstract. Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the radiative effect of tropospheric O3 for January and July 2005. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our derived radiative effect reflects the unadjusted (instantaneous) effect of the total tropospheric O3 rather than the anthropogenic component. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. We focus specifically on the magnitude and spatial structure of the cloud effect on both the short- and long-wave radiative budget. The estimates presented here can be used to evaluate the various aspects of model-generated radiative forcing. For example, our derived cloud impact is to reduce the radiative effect of tropospheric ozone by ~16%. This is centered within the published range of model-produced cloud effect on instantaneous radiative forcing.


2013 ◽  
Vol 13 (8) ◽  
pp. 21455-21505
Author(s):  
E. Emili ◽  
B. Barret ◽  
S. Massart ◽  
E. Le Flochmoen ◽  
A. Piacentini ◽  
...  

Abstract. Accurate and temporally resolved fields of free-troposphere ozone are of major importance to quantify the intercontinental transport of pollution and the ozone radiative forcing. In this study we examine the impact of assimilating ozone observations from the Microwave Limb Sounder (MLS) and the Infrared Atmospheric Sounding Interferometer (IASI) in a global chemical transport model (MOdèle de Chimie Atmosphérique à Grande Échelle, MOCAGE). The assimilation of the two instruments is performed by means of a variational algorithm (4-D-VAR) and allows to constrain stratospheric and tropospheric ozone simultaneously. The analysis is first computed for the months of August and November 2008 and validated against ozone-sondes measurements to verify the presence of observations and model biases. It is found that the IASI Tropospheric Ozone Column (TOC, 1000–225 hPa) should be bias-corrected prior to assimilation and MLS lowermost level (215 hPa) excluded from the analysis. Furthermore, a longer analysis of 6 months (July–August 2008) showed that the combined assimilation of MLS and IASI is able to globally reduce the uncertainty (Root Mean Square Error, RMSE) of the modeled ozone columns from 30% to 15% in the Upper-Troposphere/Lower-Stratosphere (UTLS, 70–225 hPa) and from 25% to 20% in the free troposphere. The positive effect of assimilating IASI tropospheric observations is very significant at low latitudes (30° S–30° N), whereas it is not demonstrated at higher latitudes. Results are confirmed by a comparison with additional ozone datasets like the Measurements of OZone and wAter vapour by aIrbus in-service airCraft (MOZAIC) data, the Ozone Monitoring Instrument (OMI) total ozone columns and several high-altitude surface measurements. Finally, the analysis is found to be little sensitive to the assimilation parameters and the model chemical scheme, due to the high frequency of satellite observations compared to the average life-time of free-troposphere/low-stratosphere ozone.


2016 ◽  
Vol 16 (7) ◽  
pp. 4481-4495 ◽  
Author(s):  
Mattia Righi ◽  
Johannes Hendricks ◽  
Robert Sausen

Abstract. We use the EMAC (ECHAM/MESSy Atmospheric Chemistry) global climate–chemistry model coupled to the aerosol module MADE (Modal Aerosol Dynamics model for Europe, adapted for global applications) to simulate the impact of aviation emissions on global atmospheric aerosol and climate in 2030. Emissions of short-lived gas and aerosol species follow the four Representative Concentration Pathways (RCPs) designed in support of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We compare our findings with the results of a previous study with the same model configuration focusing on year 2000 emissions. We also characterize the aviation results in the context of the other transport sectors presented in a companion paper. In spite of a relevant increase in aviation traffic volume and resulting emissions of aerosol (black carbon) and aerosol precursor species (nitrogen oxides and sulfur dioxide), the aviation effect on particle mass concentration in 2030 remains quite negligible (on the order of a few ng m−3), about 1 order of magnitude less than the increase in concentration due to other emission sources. Due to the relatively small size of the aviation-induced aerosol, however, the increase in particle number concentration is significant in all scenarios (about 1000 cm−3), mostly affecting the northern mid-latitudes at typical flight altitudes (7–12 km). This largely contributes to the overall change in particle number concentration between 2000 and 2030, which also results in significant climate effects due to aerosol–cloud interactions. Aviation is the only transport sector for which a larger impact on the Earth's radiation budget is simulated in the future: the aviation-induced radiative forcing in 2030 is more than doubled with respect to the year 2000 value of −15 mW m−2 in all scenarios, with a maximum value of −63 mW m−2 simulated for RCP2.6.


2020 ◽  
Author(s):  
Yang Chen

<p>Brc Carbon is a class of light-absorbing organic species, playing important roles on solar radiation budget and therefore influences climate forcing over regional and even global scales. We analyzed and evaluated the light absorption and radiative forcing of BrC in Chongqing, Wanzhou (Three Gorges Reservoir region), and Chengdu in the Sichuan Basin of Southwest China. The light-absorbing properties were evaluated, including mass absorption efficiency, absorption Ångström exponent, and contributions to radiative forcing. The sources of BrC are also identified, including the contribution of secondary aerosol formation and primary emissions. This study contributes to the understandings of sources and the impact of brown carbon in the Sichuan Basin, southwestern China.</p>


2018 ◽  
Vol 18 (12) ◽  
pp. 8829-8848 ◽  
Author(s):  
Justyna Lisok ◽  
Anna Rozwadowska ◽  
Jesper G. Pedersen ◽  
Krzysztof M. Markowicz ◽  
Christoph Ritter ◽  
...  

Abstract. The aim of the presented study was to investigate the impact on the radiation budget of a biomass-burning plume, transported from Alaska to the High Arctic region of Ny-Ålesund, Svalbard, in early July 2015. Since the mean aerosol optical depth increased by the factor of 10 above the average summer background values, this large aerosol load event is considered particularly exceptional in the last 25 years. In situ data with hygroscopic growth equations, as well as remote sensing measurements as inputs to radiative transfer models, were used, in order to estimate biases associated with (i) hygroscopicity, (ii) variability of single-scattering albedo profiles, and (iii) plane-parallel closure of the modelled atmosphere. A chemical weather model with satellite-derived biomass-burning emissions was applied to interpret the transport and transformation pathways. The provided MODTRAN radiative transfer model (RTM) simulations for the smoke event (14:00 9 July–11:30 11 July) resulted in a mean aerosol direct radiative forcing at the levels of −78.9 and −47.0 W m−2 at the surface and at the top of the atmosphere, respectively, for the mean value of aerosol optical depth equal to 0.64 at 550 nm. This corresponded to the average clear-sky direct radiative forcing of −43.3 W m−2, estimated by radiometer and model simulations at the surface. Ultimately, uncertainty associated with the plane-parallel atmosphere approximation altered results by about 2 W m−2. Furthermore, model-derived aerosol direct radiative forcing efficiency reached on average −126 W m-2/τ550 and −71 W m-2/τ550 at the surface and at the top of the atmosphere, respectively. The heating rate, estimated at up to 1.8 K day−1 inside the biomass-burning plume, implied vertical mixing with turbulent kinetic energy of 0.3 m2 s−2.


2014 ◽  
Vol 14 (1) ◽  
pp. 177-198 ◽  
Author(s):  
E. Emili ◽  
B. Barret ◽  
S. Massart ◽  
E. Le Flochmoen ◽  
A. Piacentini ◽  
...  

Abstract. Accurate and temporally resolved fields of free-troposphere ozone are of major importance to quantify the intercontinental transport of pollution and the ozone radiative forcing. We consider a global chemical transport model (MOdèle de Chimie Atmosphérique à Grande Échelle, MOCAGE) in combination with a linear ozone chemistry scheme to examine the impact of assimilating observations from the Microwave Limb Sounder (MLS) and the Infrared Atmospheric Sounding Interferometer (IASI). The assimilation of the two instruments is performed by means of a variational algorithm (4D-VAR) and allows to constrain stratospheric and tropospheric ozone simultaneously. The analysis is first computed for the months of August and November 2008 and validated against ozonesonde measurements to verify the presence of observations and model biases. Furthermore, a longer analysis of 6 months (July–December 2008) showed that the combined assimilation of MLS and IASI is able to globally reduce the uncertainty (root mean square error, RMSE) of the modeled ozone columns from 30 to 15% in the upper troposphere/lower stratosphere (UTLS, 70–225 hPa). The assimilation of IASI tropospheric ozone observations (1000–225 hPa columns, TOC – tropospheric O3 column) decreases the RMSE of the model from 40 to 20% in the tropics (30° S–30° N), whereas it is not effective at higher latitudes. Results are confirmed by a comparison with additional ozone data sets like the Measurements of OZone and wAter vapour by aIrbus in-service airCraft (MOZAIC) data, the Ozone Monitoring Instrument (OMI) total ozone columns and several high-altitude surface measurements. Finally, the analysis is found to be insensitive to the assimilation parameters. We conclude that the combination of a simplified ozone chemistry scheme with frequent satellite observations is a valuable tool for the long-term analysis of stratospheric and free-tropospheric ozone.


2010 ◽  
Vol 44 (11) ◽  
pp. 1443-1448 ◽  
Author(s):  
Yasuko Yoshida ◽  
Bryan N. Duncan ◽  
Christian Retscher ◽  
Kenneth E. Pickering ◽  
Edward A. Celarier ◽  
...  

2016 ◽  
Author(s):  
Felix N. Matt ◽  
John F. Burkhart ◽  
Joni-Pekka Pietikäinen

Abstract. Light absorbing impurities in snow and ice (LAISI) originating from atmospheric deposition enhance the snow melt by increasing the absorption of short wave radiation. The consequences are a shortening of the snow duration due to increased snow melt and, on a catchment scale, a temporal shift in the discharge generation during the spring melt season. In this study, we present a newly developed snow algorithm for application in hydrolgical models that allows for an additional class of input variables: the deposition rate of various species of light absorbing aerosols. To show the sensitivity of different model parameters, we first use the model as 1-D point model forced with representative synthetic data and investigate the impact of parameters and variables specific to the algorithm determining the effect of LAISI. We then demonstrate the significance of the additional forcing by simulating black carbon deposited on snow of a remote south Norwegian catchment over a six years period, from September 2006 to August 2012. Our simulations suggest a significant impact of BC in snow on the hydrological cycle, with an average increase in discharge of 2.5 %, 9.9 %, and 21.4 % for our minimum, central and maximum effect estimate, respectively, over a two months period during the spring melt season compared to simulations where radiative forcing from LAISI is turned off. The increase in discharge is followed by a decrease caused by melt limitation due to faster decrease of the catchment's snow covered fraction in the scenarios where radiative forcing from LAISI is applied. The central effect estimate produces reasonable surface BC concentrations in snow with a strong annual cycle, showing increasing surface BC concentration during spring melt as consequence of melt amplification. However, we further identify large uncertainties in the representation of the surface BC concentration and the subsequent consequences for the snowpack evolution.


Sign in / Sign up

Export Citation Format

Share Document