scholarly journals DREAM: a distributed model for runoff, evapotranspiration, and antecedent soil moisture simulation

2005 ◽  
Vol 2 ◽  
pp. 31-39 ◽  
Author(s):  
S. Manfreda ◽  
M. Fiorentino ◽  
V. Iacobellis

Abstract. The paper introduces a semi-distributed hydrological model, suitable for continuous simulations, based upon the use of daily and hourly time steps. The model is called Distributed model for Runoff, Evapotranspiration, and Antecedent soil Moisture simulation (DREAM). It includes a daily water budget and an "event scale" hourly rainfall-runoff module. The two modules may be used separately or in cascade for continuous simulation. The main advantages of this approach lay in the robust and physically based parameterization, which allows use of prior information and measurable data for parameter estimation. The proposed model was applied over four medium-sized basins in southern Italy, exhibiting considerable differences in climate and other physical characteristics. The capabilities of the two modules (daily and hourly) and of the combined runs were tested against measured data.

2020 ◽  
Author(s):  
Pasquale Marino ◽  
Roberto Greco ◽  
David James Peres ◽  
Thom A. Bogaard

<p>Prediction of rainfall-induced landslides is often entrusted to the definition of empirical thresholds (usually expressed in terms of rainfall intensity and duration), linking the precipitation to the triggering of landslides. However, rainfall intensity-duration thresholds do not exploit the knowledge of the hydrological processes developing in the slope, so they tend to generate false and missed alarms. Rainfall-induced shallow landslides usually occur in initially unsaturated soil covers following an increase of pore water pressure, due to the increase of soil moisture, caused by large and persistent rainfall. Clearly, it should be possible to use soil moisture for landslide prediction. Recently, Bogaard & Greco (2018) proposed the cause-trigger conceptual framework to develop hydro-meteorological thresholds that combine the antecedent causal factors and the actual trigger connected with landslide initiation. In fact, in some regions where rainfall-induced shallow landslides are particularly dangerous and pose a serious risk to people and infrastructures, the antecedent saturation is the predisposing factor, while the actual landslide triggering is associated with the hydrologic response to the recent and incoming precipitation. In fact, numerous studies already tried to introduce, directly or with models, the effects of antecedent soil moisture content in the empirical thresholds for improving landslide forecasting. Soil moisture can be measured locally, by a range of on-site measurement techniques, or remotely, from satellites or airborne. On-site measurements have proved promising in improving the performance of thresholds for landslide early warning. On-site data are accurate but sparse, so there is an increasing interest on the possible use of remotely sensed data. And in fact, recent research has shown that they can provide useful information for landslide prediction at regional scale, despite their coarse resolution and inherent uncertainty.</p><p>However, while remote sensing techniques provide near-surface (5cm depth) soil moisture estimate, the depth involved in shallow landslide is typically 1-2m below the surface. This depth, overlapping with the root penetration zone, is influenced by antecedent precipitation, soil texture, vegetation and, so, it is very difficult to find a clear relationship with near-surface soil moisture. Many studies have been conducted to provide root-zone soil moisture through physically-based approaches and data driven methods, data assimilation schemes, and satellite information.</p><p>In this study, the question if soil moisture information derived from current or future satellite products can improve landslide hazard prediction, and to what extent, is investigated. Hereto, real-world landslide and hydrology information, from two sites of Southern Italy characterized by frequent shallow landslides (Peloritani mountains, in Sicily, and Partenio mountains, in Campania), is analyzed. To get datasets long enough to carry out statistical analyses, synthetic time series of rainfall and soil cover response have been generated, with the application of a stochastic rainfall model and a physically based infiltration model, for both the sites. Near-surface and root-zone soil moisture have been tested, accounting also for effects of uncertainty and of coarse spatial and temporal resolution of measurements. The obtained results show that, in all cases, soil moisture information allows building hydro-meteorological thresholds for landslide prediction, significantly outperforming the currently adopted purely meteorological thresholds.</p><p> </p><p> </p>


2012 ◽  
Vol 49 (5) ◽  
pp. 681-691 ◽  
Author(s):  
Saeed Golian ◽  
Bahram Saghafian ◽  
Ashkan Farokhnia

In the present work, the joint response of key hydrologic variables, including total precipitation depths and the corresponding simulated peak discharges, are investigated for different antecedent soil moisture conditions using the copula method. The procedure started with the calibration and validation of the soil moisture accounting (SMA) loss rate algorithm incorporated in the Hydrologic Engineering Center – hydrologic modeling system (HEC–HMS) model for the study watershed. A 1000 year long time series of hourly rainfall was then generated by the Neyman–Scott rectangular pulses (NSRP) rainfall generator, which was then transformed into the runoff rate by the HEC–HMS model. This long-term continuous hydrological simulation resulted in characterizing the response of the watershed for various input conditions such as initial soil moisture content (AMC), total rainfall depth, and rainfall duration. For each initial soil moisture class, the copula method was employed to determine the joint probability distribution of rainfall depth and peak discharge. For instance, for dry AMC condition and 1 h rainfall duration, the Joe family fitted best to the data, compared with six other one-parameter families of copulas. Results showed that the bivariate analysis of rainfall–runoff using the copula method can well characterize the watershed hydrological behavior. The derived offline curves could provide a probabilistic real-time peak discharge forecast.


2019 ◽  
Author(s):  
Navid Jadidoleslam ◽  
Ricardo Mantilla ◽  
Witold F. Krajewski ◽  
Radoslaw Goska

Following results by Crow et al. (2017) [Geophys. Res. Lett. 44, 5495-5503] on the impact of antecedent soil moisture on runoff production, we investigate total runoff production during individual rainfall-runoff events in agricultural landscapes as a function of antecedent soil moisture, total rainfall, and vegetation cover for catchments with drainage areas ranging from 80-1000 km2 in the state of Iowa, USA. For our study, we use Enhanced SMAP soil moisture estimates, the MODIS enhanced vegetation index (EVI), gauge-corrected Stage IV radar rainfall, and USGS streamflow data. We analyze the event runoff ratio as a function of event-scale rainfall, antecedent SMAP soil moisture and soil-moisture-deficit-normalized rainfall for the events in a period from March 31, 2015 to October 31, 2018. Our goal is to confirm the relationships identified by Crow et al. (2017) in heavily managed agricultural landscapes and to refine some of their methodological steps to quantify the role of additional variables controlling runoff production. To this end, we define three different strategies to identify rainfall-runoff events and add a baseflow separation step to better insulate event scale stormflow runoff. We test the effects of antecedent soil moisture, rainfall, and vegetation on the event-scale runoff ratio. The antecedent SMAP soil moisture and event-scale rainfall are found to have significant predictive power in estimating event runoff ratio. Soil moisture deficit-normalized rainfall, introduced as the ratio of event-scale rainfall to available space in top soil before initiation of the event, exhibited a more distinct relationship with runoff ratio. The long-term analysis of runoff ratio, rainfall, and MODIS EVI indicated that, in an agricultural region, vegetation plays a significant role in determining event-scale runoff ratios. The methodology and outcome of our study have direct implications on real-time flood forecasting and long-term hydrologic assessments.


2005 ◽  
Vol 9 (4) ◽  
pp. 347-364 ◽  
Author(s):  
Z. Liu ◽  
M. L. V. Martina ◽  
E. Todini

Abstract. TOPKAPI is a physically-based, fully distributed hydrological model with a simple and parsimonious parameterisation. The original TOPKAPI is structured around five modules that represent evapotranspiration, snowmelt, soil water, surface water and channel water, respectively. Percolation to deep soil layers was ignored in the old version of the TOPKAPI model since it was not important in the basins to which the model was originally applied. Based on published literature, this study developed a new version of the TOPKAPI model, in which the new modules of interception, infiltration, percolation, groundwater flow and lake/reservoir routing are included. This paper presents an application study that makes a first attempt to derive information from public domains through the internet on the topography, soil and land use types for a case study Chinese catchment - the Upper Xixian catchment in Huaihe River with an area of about 10000 km2, and apply a new version of TOPKAPI to the catchment for flood simulation. A model parameter value adjustment was performed using six months of the 1998 dataset. Calibration did not use a curve fitting process, but was chiefly based upon moderate variations of parameter values from those estimated on physical grounds, as is common in traditional calibration. The hydrometeorological dataset of 2002 was then used to validate the model, both against the outlet discharge as well as at an internal gauging station. Finally, to complete the model performance analysis, parameter uncertainty and its effects on predictive uncertainty were also assessed by estimating a posterior parameter probability density via Bayesian inference.


2019 ◽  
Vol 11 (11) ◽  
pp. 1335 ◽  
Author(s):  
Han Yang ◽  
Lihua Xiong ◽  
Qiumei Ma ◽  
Jun Xia ◽  
Jie Chen ◽  
...  

The traditional calibration objective of hydrological models is to optimize streamflow simulations. To identify the value of satellite soil moisture data in calibrating hydrological models, a new objective of optimizing soil moisture simulations has been added to bring in satellite data. However, it leads to problems: (i) how to consider the trade-off between various objectives; (ii) how to consider the uncertainty these satellite data bring in. Among existing methods, the multi-objective Bayesian calibration framework has the potential to solve both problems but is more suitable for lumped models since it can only deal with constant variances (in time and space) of model residuals. In this study, to investigate the utilization of a soil moisture product from the Soil Moisture Active Passive (SMAP) satellite in calibrating a distributed hydrological model, the DEM (Digital Elevation Model) -based Distributed Rainfall-Runoff Model (DDRM), a multi-objective Bayesian hierarchical framework is employed in two humid catchments of southwestern China. This hierarchical framework is superior to the non-hierarchical framework when applied to distributed models since it considers the spatial and temporal residual heteroscedasticity of distributed model simulations. Taking the streamflow-based single objective calibration as the benchmark, results of adding satellite soil moisture data in calibration show that (i) there is less uncertainty in streamflow simulations and better performance of soil moisture simulations either in time and space; (ii) streamflow simulations are largely affected, while soil moisture simulations are slightly affected by weights of objectives. Overall, the introduction of satellite soil moisture data in addition to observed streamflow in calibration and putting more weights on the streamflow calibration objective lead to better hydrological performance. The multi-objective Bayesian hierarchical framework implemented here successfully provides insights into the value of satellite soil moisture data in distributed model calibration.


Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 99
Author(s):  
Giorgio Baiamonte

It is known that at the event scale, evaporation losses of rainfall intercepted by canopy are a few millimeters, which is often not much in comparison to other stocks in the water balance. Nevertheless, at yearly scale, the number of times that the canopy is filled by rainfall and then depleted can be so large that the interception flux may become an important fraction of rainfall. Many accurate interception models and models that describe evaporation by wet canopy have been proposed. However, they often require parameters that are difficult to obtain, especially for large-scale applications. In this paper, a simplified interception/evaporation model is proposed, which considers a modified Merrian model to compute interception during wet spells, and a simple power-law equation to model evaporation by wet canopy during dry spells. Thus, the model can be applied for continuous simulation, according to the sub hourly rainfall data that is appropriate to study both processes. It is shown that the Merrian model can be derived according to a simple linear storage model, also accounting for the antecedent intercepted stored volume, which is useful to consider for the suggested simplified approach. For faba bean cover crop, an application of the suggested procedure, providing reasonable results, is performed and discussed.


2021 ◽  
Author(s):  
Craig R. Ferguson ◽  
Shubhi Agrawal ◽  
Lance F. Bosart

<p>The U.S. Great Plains low-level jet (LLJ) is active on 26% and 62% of May-September days in the northern and southern Plains, respectively. Characterized by a diurnally-oscillating low-level wind maximum below 700 hPa, large vertical wind shear, and enhanced atmospheric moisture convergence, LLJs have been shown to fuel extreme wind- and precipitation generating mesoscale convective systems. Overall, they explain 30-50% of May-September precipitation in the Plains. The considerable societal impacts of LLJs, which span agriculture, severe weather, and wind energy, have long motivated meteorologist-led investigations into their dynamics and predictability. The sensitivity of LLJs to regional soil moisture gradients was established over thirty years ago. However, it was only recently that our work provided the first estimates of the added-value of satellite soil moisture data assimilation (DA) to LLJ forecasts.</p><p>In this presentation, we review and expand upon our previous analysis of 75 NASA Unified WRF LLJ case studies simulated with- and without weakly-coupled NASA Soil Moisture Active Passive (SMAP) soil moisture DA. Of the 75-jet cases, 43 are uncoupled LLJs and 32 are coupled LLJs. Their dynamical classification corresponds with the probable efficacy of land data assimilation. Cyclone-induced coupled LLJs, found in the warm sector of frontal systems, are strongly driven by synoptics and less likely to be influenced by land forcing. Conversely, uncoupled LLJs that occur during quiescent conditions of an anticyclonic high pressure ridge system are likely to be more strongly affected by terrain and soil moisture gradient-induced circulations.</p><p>It is shown that SMAP DA is generally more effective in uncoupled LLJ cases. However, significant SMAP DA-induced wind speed differences are noted for both LLJ types at their core and exit regions. Notably, the range of SMAP DA-induced wind speed differences between LLJs of the same class (i.e., uncoupled LLJs) is comparable to the range of differences between LLJs of different classes (i.e., coupled vs. uncoupled). Follow-on analyses presented here address the question of what differs between LLJs with small and large SMAP DA effects. Specifically, we explore attribution of event-scale differences in the added-value of SMAP DA to factors including SMAP spatial coverage, antecedent soil moisture, and the strength of synoptic forcing. Finally, a closer look is given to the verification of jet exit region SMAP DA-induced wind speed shifts using Rapid Refresh.</p>


2020 ◽  
Author(s):  
Konstantina Risva ◽  
Dionysios Nikolopoulos ◽  
Andreas Efstratiadis

<p>We present a distributed hydrological model with minimal calibration requirements, which represents the rainfall-runoff transformation and the flow routing processes. The generation of surface runoff is based on a modified NRCS-CN scheme. Key novelty is the use of representative CN values, which are initially assigned to model cells on the basis of slope, land cover and permeability maps, and adjusted to antecedent soil moisture conditions. For the propagation of runoff to the basin outlet two flow types are considered, i.e. overland flow across the terrain and channel flow along the river network. These are synthesized by employing a novel velocity-based approach, where the assignment of velocities along the river network is based on macroscopic hydraulic information. It also uses the concept of varying time of concentration, which is considered function of the average runoff intensity across the catchment. This configuration is suitable for event-based flood simulation and requires the specification of only two lumped inputs, which are either manually estimated or inferred through calibration. The model can also run in continuous mode, by employing a soil moisture accounting scheme that produces both the surface (overland) runoff and the interflow through the unsaturated zone. The two model configurations are demonstrated in the representation of observed flows across Nedontas river basin at South Peloponnese, Greece.</p>


2021 ◽  
Vol 930 (1) ◽  
pp. 012071
Author(s):  
R I Hapsari ◽  
M Syarifuddin ◽  
R I Putri ◽  
D Novianto

Abstract Soil moisture is an important parameter in landslides because of increased pore pressure and decreased shear strength. This research aims to derive soil moisture indicators from two hydrological models: the physically-based distributed hydrological model and the lumped model. Rainfall-Runoff-Inundation (RRI) Model is used to simulate the hydrological response of catchments to the rainfall-induced landslide in a distributed manner. Tank Model as a lumped hydrological model is also used in this study to simulate the dynamic of soil moisture. The study area is the upper Brantas River Basin, prone to landslides due to heavy rainfall and steep slope. Calibration of the model is conducted by tuning the model according to the river discharge data. The simulation indicates that acceptable performance is confirmed. Tank Model can provide the dynamic of the soil moisture. However, by using this approach, the spatial variation of the soil moisture cannot be presented. Regarding the quantitative amount of soil water content, RRI Model could make a reasonable simulation though the temporal variation is not adequately reproduced. Validation of this method with satellite soil moisture as well as ground measurement is also presented. The challenges of using these approaches to develop landslide hazard assessment are discussed.


2020 ◽  
Vol 7 (04) ◽  
Author(s):  
PRADEEP H K ◽  
JASMA BALASANGAMESHWARA ◽  
K RAJAN ◽  
PRABHUDEV JAGADEESH

Irrigation automation plays a vital role in agricultural water management system. An efficient automatic irrigation system is crucial to improve crop water productivity. Soil moisture based irrigation is an economical and efficient approach for automation of irrigation system. An experiment was conducted for irrigation automation based on the soil moisture content and crop growth stage. The experimental findings exhibited that, automatic irrigation system based on the proposed model triggers the water supply accurately based on the real-time soil moisture values.


Sign in / Sign up

Export Citation Format

Share Document