scholarly journals Monitoring military landscapes and detection of underground man-made critical infrastructures in Cyprus using Earth Observation

2018 ◽  
Vol 45 ◽  
pp. 335-342 ◽  
Author(s):  
George Melillos ◽  
Athos Agapiou ◽  
Silas Michaelides ◽  
Diofantos G. Hadjimitsis

Abstract. This paper aims to explore the importance of monitoring military landscapes in Cyprus using Earth Observation. The rising availability of remote sensing data provides adequate opportunities for monitoring military landscapes and detecting underground military man-made structures. In order to study possible differences in the spectral signatures of vegetation so as to be used for the systematic monitoring of military landscapes that comprise underground military structures, field spectroscopy has been used. The detection of underground and ground military structures based on remote sensing data could make a significant contribution to defence and security science. In this paper, underground military structures over vegetated areas were monitored, using both ground and satellite remote sensing data. Several ground measurements have been carried out in military areas, throughout the phenological cycle of plant growth, during 2016–2017. The research was carried out using SVC-HR1024 ground spectroradiometers. Field spectroradiometric measurements were collected and analysed in an effort to identify underground military structures using the spectral profile of the vegetated surface overlying the underground target and the surrounding area, comprising the in situ observations. Multispectral vegetation indices were calculated in order to study their variations over the corresponding vegetation areas, in presence or absence of military underground structures. The results show that Vegetation Indices such as NDVI, SR, OSAVI, DVI and MSR are useful for determining areas where military underground structures are present.

2019 ◽  
Vol 222 ◽  
pp. 125-138 ◽  
Author(s):  
Depeng Zuo ◽  
Siyang Cai ◽  
Zongxue Xu ◽  
Dingzhi Peng ◽  
Guangyuan Kan ◽  
...  

2020 ◽  
Author(s):  
Depeng Zuo ◽  
Siyang Cai ◽  
Zongxue Xu ◽  
Hong Yang

<p>Most research on drought assessment adopted historical in-situ observations, however, there has been increased data availability from remote sensing during the recent years. This study utilizes the two sources of data in drought assessment. Using the historical in-situ observations, the spatiotemporal variations of meteorological drought were firstly investigated by calculating the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) at 1, 3, 6-month time scales in Northeast China. Using remote sensing data, the combined deficit index (CDI) for agricultural drought assessment was computed based on tri-monthly sum of deficit in antecedent rainfall and deficit in monthly NDVI at land cover type and sub-type levels in the same region. In the end, the agricultural drought calculated by the CDI was evaluated against the deficit in crop yield, as well as deficit in Land Surface Temperature (LST) and Evapotranspiration (ET), in order to verify the applicability of the CDI for agricultural drought assessment in the study region. The results showed that the CDI has better correlations with the SPEI (R<sup>2</sup>=0.48) than the SPI (R<sup>2</sup>=0.05) at 3-month scales with weight factor a=0.5 in dry farming areas. The spatial pattern of the CDI showed that the area of agricultural drought increased from July to October. In addition, a significant linear correlation was found between the CDI and anomaly in annual agricultural yield (R<sup>2</sup>=0.55), and anomaly in monthly land surface temperature (R<sup>2</sup>=0.42). The results prove that the CDI calculated by remote sensing data is not only a reliable indicator for agricultural drought assessment in Northeast China, but also provides useful information for agricultural drought disaster prevention and mitigation, and water management improvement.</p>


Author(s):  
Guy Serbin ◽  
Stuart Green

Many remote sensing analytical data products are most useful when they are in an appropriate regional or national projection, rather than globally based projections like Universal Transverse Mercator (UTM) or geographic coordinates, i.e., latitude and longitude. Furthermore, leaving data in the global systems can create problems, either due to misprojection of imagery because of UTM zone boundaries, or because said projections are not optimised for local use. We developed the open-source Irish Earth Observation (IEO) Python module to maintain a local remote sensing data library for Ireland. This pure Python module, in conjunction with the IEOtools Python scripts, utilises the Geospatial Data Abstraction Library (GDAL) for its geoprocessing functionality. At present, the module supports only Landsat TM/ETM+/OLI/TIRS data that have been corrected to surface reflectance using the USGS/ESPA LEDAPS/ LaSRC Collection 1 architecture. This module and the IEOtools catalogue available Landsat data from the USGS/EROS archive, and includes functions for the importation of imagery into a defined local projection and calculation of cloud-free vegetation indices. While this module is distributed with default values and data for Ireland, it can be adapted for other regions with simple modifications to the configuration files and geospatial data sets.


2021 ◽  
Vol 13 (9) ◽  
pp. 1715
Author(s):  
Foyez Ahmed Prodhan ◽  
Jiahua Zhang ◽  
Fengmei Yao ◽  
Lamei Shi ◽  
Til Prasad Pangali Sharma ◽  
...  

Drought, a climate-related disaster impacting a variety of sectors, poses challenges for millions of people in South Asia. Accurate and complete drought information with a proper monitoring system is very important in revealing the complex nature of drought and its associated factors. In this regard, deep learning is a very promising approach for delineating the non-linear characteristics of drought factors. Therefore, this study aims to monitor drought by employing a deep learning approach with remote sensing data over South Asia from 2001–2016. We considered the precipitation, vegetation, and soil factors for the deep forwarded neural network (DFNN) as model input parameters. The study evaluated agricultural drought using the soil moisture deficit index (SMDI) as a response variable during three crop phenology stages. For a better comparison of deep learning model performance, we adopted two machine learning models, distributed random forest (DRF) and gradient boosting machine (GBM). Results show that the DFNN model outperformed the other two models for SMDI prediction. Furthermore, the results indicated that DFNN captured the drought pattern with high spatial variability across three penology stages. Additionally, the DFNN model showed good stability with its cross-validated data in the training phase, and the estimated SMDI had high correlation coefficient R2 ranges from 0.57~0.90, 0.52~0.94, and 0.49~0.82 during the start of the season (SOS), length of the season (LOS), and end of the season (EOS) respectively. The comparison between inter-annual variability of estimated SMDI and in-situ SPEI (standardized precipitation evapotranspiration index) showed that the estimated SMDI was almost similar to in-situ SPEI. The DFNN model provides comprehensive drought information by producing a consistent spatial distribution of SMDI which establishes the applicability of the DFNN model for drought monitoring.


Author(s):  
D. Varade ◽  
O. Dikshit

<p><strong>Abstract.</strong> Snow cover characterization and estimation of snow geophysical parameters is a significant area of research in water resource management and surface hydrological processes. With advances in spaceborne remote sensing, much progress has been achieved in the qualitative and quantitative characterization of snow geophysical parameters. However, most of the methods available in the literature are based on the microwave backscatter response of snow. These methods are mostly based on the remote sensing data available from active microwave sensors. Moreover, in alpine terrains, such as in the Himalayas, due to the geometrical distortions, the missing data is significant in the active microwave remote sensing data. In this paper, we present a methodology utilizing the multispectral observations of Sentinel-2 satellite for the estimation of surface snow wetness. The proposed approach is based on the popular triangle method which is significantly utilized for the assessment of soil moisture. In this case, we develop a triangular feature space using the near infrared (NIR) reflectance and the normalized differenced snow index (NDSI). Based on the assumption that the NIR reflectance is linearly related to the liquid water content in the snow, we derive a physical relationship for the estimation of snow wetness. The modeled estimates of snow wetness from the proposed approach were compared with in-situ measurements of surface snow wetness. A high correlation determined by the coefficient of determination of 0.94 and an error of 0.535 was observed between the proposed estimates of snow wetness and in-situ measurements.</p>


2018 ◽  
Vol 40 ◽  
pp. 63 ◽  
Author(s):  
Rayonil Gomes Carneiro ◽  
Alice Henkes ◽  
Gilberto Fisch ◽  
Camilla Kassar Borges

In the present study, the evolution the diurnal cycle of planetary boundary layer in the wet season at Amazon region during a period of intense observations carried out in the GOAmazon Project 2014/2015 (Green Ocean Amazon).The analysis includes radiosonde and remote sensing data. In general case, the results of the daily cycle in the wet season indicate a Nocturnal boundary layer with a small oscillation in its depth and with a tardy erosion. The convective boundary layer did not present great depth, responding to the low values of sensible heat of the wet season. A comparison between the different techniques(in situ observations and remote sensing)  for estimating the planetary boundary layer is also presented.


2021 ◽  
Author(s):  
Simon Jirka ◽  
Benedikt Gräler ◽  
Matthes Rieke ◽  
Christian Autermann

&lt;p&gt;For many scientific domains such as hydrology, ocean sciences, geophysics and social sciences, geospatial observations are an important source of information. Scientists conduct extensive measurement campaigns or operate comprehensive monitoring networks to collect data that helps to understand and to model current and past states of complex environment. The variety of data underpinning research stretches from in-situ observations to remote sensing data (e.g., from the European Copernicus programme) and contributes to rapidly increasing large volumes of geospatial data.&lt;/p&gt;&lt;p&gt;However, with the growing amount of available data, new challenges arise. Within our contribution, we will focus on two specific aspects: On the one hand, we will discuss the specific challenges which result from the large volumes of remote sensing data that have become available for answering scientific questions. For this purpose, we will share practical experiences with the use of cloud infrastructures such as the German platform CODE-DE and will discuss concepts that enable data processing close to the data stores. On the other hand, we will look into the question of interoperability in order to facilitate the integration and collaborative use of data from different sources. For this aspect, we will give special consideration to the currently emerging new generation of standards of the Open Geospatial Consortium (OGC) and will discuss how specifications such as the OGC API for Processes can help to provide flexible processing capabilities directly within Cloud-based research data infrastructures.&lt;/p&gt;


2020 ◽  
Vol 13 (3) ◽  
pp. 1267-1284 ◽  
Author(s):  
Theo Baracchini ◽  
Philip Y. Chu ◽  
Jonas Šukys ◽  
Gian Lieberherr ◽  
Stefan Wunderle ◽  
...  

Abstract. The understanding of physical dynamics is crucial to provide scientifically credible information on lake ecosystem management. We show how the combination of in situ observations, remote sensing data, and three-dimensional hydrodynamic (3D) numerical simulations is capable of resolving various spatiotemporal scales involved in lake dynamics. This combination is achieved through data assimilation (DA) and uncertainty quantification. In this study, we develop a flexible framework by incorporating DA into 3D hydrodynamic lake models. Using an ensemble Kalman filter, our approach accounts for model and observational uncertainties. We demonstrate the framework by assimilating in situ and satellite remote sensing temperature data into a 3D hydrodynamic model of Lake Geneva. Results show that DA effectively improves model performance over a broad range of spatiotemporal scales and physical processes. Overall, temperature errors have been reduced by 54 %. With a localization scheme, an ensemble size of 20 members is found to be sufficient to derive covariance matrices leading to satisfactory results. The entire framework has been developed with the goal of near-real-time operational systems (e.g., integration into meteolakes.ch).


Author(s):  
Ram L. Ray ◽  
Maurizio Lazzari ◽  
Tolulope Olutimehin

Landslide is one of the costliest and fatal geological hazards, threatening and influencing the socioeconomic conditions in many countries globally. Remote sensing approaches are widely used in landslide studies. Landslide threats can also be investigated through slope stability model, susceptibility mapping, hazard assessment, risk analysis, and other methods. Although it is possible to conduct landslide studies using in-situ observation, it is time-consuming, expensive, and sometimes challenging to collect data at inaccessible terrains. Remote sensing data can be used in landslide monitoring, mapping, hazard prediction and assessment, and other investigations. The primary goal of this chapter is to review the existing remote sensing approaches and techniques used to study landslides and explore the possibilities of potential remote sensing tools that can effectively be used in landslide studies in the future. This chapter also provides critical and comprehensive reviews of landslide studies focus¬ing on the role played by remote sensing data and approaches in landslide hazard assessment. Further, the reviews discuss the application of remotely sensed products for landslide detection, mapping, prediction, and evaluation around the world. This systematic review may contribute to better understanding the extensive use of remotely sensed data and spatial analysis techniques to conduct landslide studies at a range of scales.


Sign in / Sign up

Export Citation Format

Share Document