scholarly journals The influence of instrumental line shape degradation on NDACC gas retrievals: total column and profile

2018 ◽  
Vol 11 (5) ◽  
pp. 2879-2896 ◽  
Author(s):  
Youwen Sun ◽  
Mathias Palm ◽  
Cheng Liu ◽  
Frank Hase ◽  
David Griffith ◽  
...  

Abstract. We simulated instrumental line shape (ILS) degradations with respect to typical types of misalignment, and compared their influence on each NDACC (Network for Detection of Atmospheric Composition Change) gas. The sensitivities of the total column, the root mean square (rms) of the fitting residual, the total random uncertainty, the total systematic uncertainty, the total uncertainty, degrees of freedom for signal (DOFs), and the profile with respect to different levels of ILS degradation for all current standard NDACC gases, i.e. O3, HNO3, HCl, HF, ClONO2, CH4, CO, N2O, C2H6, and HCN, were investigated. The influence of an imperfect ILS on NDACC gases' retrieval was assessed, and the consistency under different meteorological conditions and solar zenith angles (SZAs) were examined. The study concluded that the influence of ILS degradation can be approximated by the linear sum of individual modulation efficiency (ME) amplitude influence and phase error (PE) influence. The PE influence is of secondary importance compared with the ME amplitude. Generally, the stratospheric gases are more sensitive to ILS degradation than the tropospheric gases, and the positive ME influence is larger than the negative ME. For a typical ILS degradation (10 %), the total columns of stratospheric gases O3, HNO3, HCl, HF, and ClONO2 changed by 1.9, 0.7, 4, 3, and 23 %, respectively, while the columns of tropospheric gases CH4, CO, N2O, C2H6, and HCN changed by 0.04, 2.1, 0.2, 1.1, and 0.75 %, respectively. In order to suppress the fractional difference in the total column for ClONO2 and other NDACC gases within 10 and 1 %, respectively, the maximum positive ME degradations for O3, HNO3, HCl, HF, ClONO2, CO, C2H6, and HCN should be less than 6, 15, 5, 5, 5, 5, 9, and 13 %, respectively; the maximum negative ME degradations for O3, HCl, and HF should be less than 6, 12, and 12 %, respectively; the influence of ILS degradation on CH4 and N2O can be regarded as being negligible.

2018 ◽  
Author(s):  
Youwen Sun ◽  
Mathias Palm ◽  
Cheng Liu ◽  
Frank Hase ◽  
David Griffith ◽  
...  

Abstract. Instrumental line shape (ILS) degradation can cause significant biases between global FTIR (Fourier transform infrared) networks if not properly treated. Currently, how ILS degradation influences the global NDACC (Network for Detection of Atmospheric Composition Change) gases retrieval and how much ILS deviation is acceptable for each NDACC gas are still not fully quantified. We simulated ILS degradations with respect to typical types of misalignment, and compared their influence on each NDACC gas. The sensitivities of total column, root mean square of fitting residual (RMS), total random uncertainty, total systematic uncertainty, total uncertainty, degrees of freedom for signal (DOFs), and profile with respect to different levels of ILS degradation for all current NDACC gases, i.e., O3, HNO3, HCl, HF, ClONO2, CH4, CO, N2O, C2H6, and HCN, were investigated. The influence of an imperfect ILS on NDACC gases retrieval were assessed, and the consistency under different meteorological conditions and solar zenith angles (SZA) were examined. The study concluded that the influence of ILS degradation can be approximated by the linear sum of individual modulation efficiency (ME) amplitude influence and phase error (PE) influence. The PE influence is of secondary importance compared with the ME amplitude influence. For total column retrieval, the stratospheric gases are more sensitive to ILS degradation than the tropospheric gases. For profile retrieval, the positive ME has more influence on tropospheric gases than the stratospheric gases. In contrast, the negative ME has more influence on stratospheric gases than the tropospheric gases. In order to suppress the influence on total column for ClONO2 and other NDACC gases within 10 % and 1 %, respectively, the permitted maximum ILS degradation for each NDACC gas was deduced (summarized in Table 5).


2018 ◽  
Vol 10 (12) ◽  
pp. 2041 ◽  
Author(s):  
Youwen Sun ◽  
Cheng Liu ◽  
Kalok Chan ◽  
Wei Wang ◽  
Changong Shan ◽  
...  

High resolution Fourier transform infrared (FTIR) measurement of direct sunlight does not only provide information of trace gas total columns, but also vertical distribution. Measured O3, CO, CH4, and N2O can be separated into multiple partial columns using the optimal estimation method (OEM). The retrieval of trace gas profiles is sensitive to the instrument line shape (ILS) of the FTIR spectrometer. In this paper, we present an investigation of the influence of ILS degradation on the partial column retrieval of O3, CO, CH4, and N2O. Sensitivities of the partial column, error, and degrees of freedom (DOFs) of each layer to different levels of ILS degradation for O3, CO, CH4, and N2O are estimated. We then evaluate the impact of ILS degradation on the long-term measurements. In addition, we derive the range of ILS degradation corresponding to the acceptable uncertainties of O3, CO, CH4, and N2O results. The results show that the uncertainties induced by the ILS degradation on the absolute value, error, and the DOFs of the partial column are altitude and gas species dependent. The uncertainties of the partial columns of O3 and CO are larger than those on CH4 and N2O. The stratospheric partial columns are more sensitive to the ILS degradation compared to the tropospheric part. Our result improves the understanding of the ILS degradation on the FTIR measurements, which is important for the quantification of the measurement uncertainties and minimizes the bias of the inter-comparison between different measurement platforms. This is especially useful for the validation of satellite observations, the data assimilation of chemical model simulations, and the quantification of the source/sink/trend from the FTIR measurements.


2017 ◽  
Vol 10 (3) ◽  
pp. 989-997 ◽  
Author(s):  
Youwen Sun ◽  
Mathias Palm ◽  
Christine Weinzierl ◽  
Christof Petri ◽  
Justus Notholt ◽  
...  

Abstract. The TCCON (Total Carbon Column Observing Network) and most NDACC (Network for Detection of Atmospheric Composition Change) sites assume an ideal ILS (instrumental line shape) for analysis of the spectra. In order to adapt the radiant energy received by the detector, an attenuator or different sizes of field stop can be inserted in the light path. These processes may alter the alignment of a high-resolution FTIR (Fourier transform infrared) spectrometer, and may result in bias due to ILS drift. In this paper, we first investigated the sensitivity of the ILS monitoring with respect to application of different kinds of attenuators for ground-based high-resolution FTIR spectrometers within the TCCON and NDACC networks. Both lamp and sun cell measurements were conducted after the insertion of five different attenuators in front of and behind the interferometer. The ILS characteristics derived from lamp and sun spectra are in good agreement. ILSs deduced from all lamp cell measurements were compared. As a result, the disturbances to the ILS of a high-resolution FTIR spectrometer with respect to the insertion of different attenuators at different positions were quantified. A potential strategy to adapt the incident intensity of a detector was finally deduced.


2013 ◽  
Vol 6 (12) ◽  
pp. 3527-3537 ◽  
Author(s):  
F. Hase ◽  
B. J. Drouin ◽  
C. M. Roehl ◽  
G. C. Toon ◽  
P. O. Wennberg ◽  
...  

Abstract. The TCCON (Total Carbon Column Observing Network) FTIR (Fourier transform infrared) network provides highly accurate observations of greenhouse gas column-averaged dry-air mole fractions. As an important component of TCCON quality assurance, sealed cells filled with approximately 5 mbar of HCl are used for instrumental line shape (ILS) monitoring at all TCCON sites. Here, we introduce a calibration procedure for the HCl cells which employs a refillable, pressure-monitored reference cell filled with C2H2. Using this method, we identify variations of HCl purity between the TCCON cells as a non-negligible disturbance. The new calibration procedure introduced here assigns effective pressure values to each individual cell to account for additional broadening of the HCl lines. This approach will improve the consistency of the network by significantly reducing possible station-to-station biases due to inconsistent ILS results from different HCl cells. We demonstrate that the proposed method is accurate enough to turn the ILS uncertainty into an error source of secondary importance from the viewpoint of network consistency.


2011 ◽  
Vol 4 (6) ◽  
pp. 7699-7724
Author(s):  
F. Hase

Abstract. We propose an improved monitoring scheme for the instrumental line shape (ILS) of high-resolution, ground-based FTIR (Fourier Transform Infra Red) spectrometers applied for chemical monitoring of the atmosphere by the Network for Detection of Atmospheric Composition Change (NDACC). Good ILS knowledge is required for the analysis of the recorded mid-infrared spectra. The new method applies a sequence of measurements using different gas cells instead of a single calibration cell. Three cells are used: cell C1 is a refillable cell offering 200 mm path length and equipped with a pressure gauge (filled with 100 Pa N2O), cells C2 and C3 are sealed cells offering 75 mm path length. C2 is filled with 5 Pa of pure N2O. Cell C3 is filled with 16 Pa N2O in 200 hPa technical air, so provides pressure-broadened N2O lines. We demonstrate that an ILS retrieval using C1 improves significantly the sensitivity of the ILS retrieval over the current calibration cells applied in the network, because this cell provides narrow fully saturated N2O lines. The N2O columns derived from C2 and C3 allow the performance of a highly valuable closure experiment: adopting the ILS retrieved from C1, the N2O columns of C2 and C3 are derived. Because N2O is an inert gas, both columns should be constant on long timescales. Apparent changes in the columns would immediately attract attention and indicate either inconsistent ILS results or instrumental problems of other origin. Two different cells are applied for the closure experiment, because the NDACC spectrometers observe both stratospheric and tropospheric gases: C2 mimics signatures of stratospheric gases, whereas C3 mimics signatures of tropospheric gases.


2012 ◽  
Vol 5 (3) ◽  
pp. 603-610 ◽  
Author(s):  
F. Hase

Abstract. We propose an improved monitoring scheme for the instrumental line shape (ILS) of high-resolution, ground-based FTIR (Fourier Transform InfraRed) spectrometers used for chemical monitoring of the atmosphere by the Network for Detection of Atmospheric Composition Change (NDACC). Good ILS knowledge is required for the analysis of the recorded mid-infrared spectra. The new method applies a sequence of measurements using different gas cells instead of a single calibration cell. Three cells are used: cell C1 is a refillable cell offering 200 mm path length and equipped with a pressure gauge (filled with 100 Pa N2O), cells C2 and C3 are sealed cells offering 75 mm path length. C2 is filled with 5 Pa of pure N2O. Cell C3 is filled with 16 Pa N2O in 200 hPa technical air, so provides pressure-broadened N2O lines. We demonstrate that an ILS retrieval using C1 improves significantly the sensitivity of the ILS retrieval over the current calibration cells used in the network, because this cell provides narrow fully saturated N2O lines. The N2O columns derived from C2 and C3 allow the performance of a highly valuable closure experiment: adopting the ILS retrieved from C1, the N2O columns of C2 and C3 are derived. Because N2O is an inert gas, both columns should be constant on long timescales. Apparent changes in the columns would immediately attract attention and indicate either inconsistent ILS results or instrumental problems of other origin. Two different cells are applied for the closure experiment, because the NDACC spectrometers observe both stratospheric and tropospheric gases: C2 mimics signatures of stratospheric gases, whereas C3 mimics signatures of tropospheric gases.


2016 ◽  
Author(s):  
Y. W. Sun ◽  
M. Palm ◽  
C. Weinzierl ◽  
C. Petri ◽  
J. Notholt ◽  
...  

Abstract. The TCCON (Total Carbon Column Observing Network) and most NDACC (Network for Detection of Atmospheric Composition Change) assume an ideal ILS (Instrumental line shape) in spectra retrieval and insert an attenuator or select a smaller entrance aperture to take some intensities away if incident radiation is too strong. These processes may alter the alignment of a high resolution FTIR (Fourier transform infrared) spectrometer and may result in biases due to ILS drift. In this paper, we first investigated the sensitivity of ILS monitoring with respect to various typical optical attenuators for ground-based high resolution FTIR spectrometers within the TCCON and NDACC networks. Both lamp and sun cell measurements were conducted in this analysis via the insertion of five different attenuators before and behind the interferometer. We compared the HCl profile retrievals using an ideal ILS with those using an actual measured ILS. The results showed that the total column amounts were under-estimated by about 0.4 % if the ME (modulation efficiency) amplitude deviates by about –3.5 %. Furthermore, the retrieval errors increased and the obvious profile deviations are shown in a height range with a high retrieval sensitivity. ILSs deduced from all scenarios of lamp cell measurements were compared, and were further used to derive the HCl profile from the same spectrum. As a result, the disturbances to the ILS of a high resolution FTIR spectrometer with respect to inserting different attenuators before and behind the interferometer are quantified. The resulting ILS errors propagation into gas retrievals were also analyzed. In conclusion, the alignment of the optical parts before the interferometer is more critical than those behind the interferometer, and the entrance aperture (the focus of the entrance parabolic/spherical mirror) exhibited the most critical influence. An optimum method to adapt the incident intensity of a detector was finally deduced.


2015 ◽  
Vol 8 (7) ◽  
pp. 3047-3057 ◽  
Author(s):  
M. Frey ◽  
F. Hase ◽  
T. Blumenstock ◽  
J. Groß ◽  
M. Kiel ◽  
...  

Abstract. A comprehensive calibration procedure for mobile, low-resolution, solar-absorption FTIR spectrometers, used for greenhouse gases observations, is developed. These instruments commend themselves for campaign use and deployment at remote sites. The instrumental line shape (ILS) of each spectrometer has been thoroughly characterized by analyzing the shape of H2O signatures in open path spectra. A setup for the external source is suggested and the invariance of derived ILS parameters with regard to chosen path length is demonstrated. The instrumental line shape characteristics of all spectrometers were found to be close to nominal. Side-by-side solar observations before and after a campaign, which involved shipping of all spectrometers to a selected target site and back, are applied for verifying the temporal invariability of instrumental characteristics and for deriving intercalibration factors for XCO2 and XCH4, which take into account residual differences of instrumental characteristics. An excellent level of agreement and stability was found between the different spectrometers: the uncorrected biases in XCO2 and XCH4 are smaller than 0.01 and 0.15 %, respectively, and the drifts are smaller than 0.005 and 0.035 %. As an additional sensitive demonstration of the instrumental performance we show the excellent agreement of ground pressure values obtained from the total column measurements of O2 and barometric records. We find a calibration factor of 0.9700 for the spectroscopic measurements in comparison to the barometric records and a very small scatter between the individual spectrometers (0.02 %). As a final calibration step, using a co-located TCCON (Total Carbon Column Observation Network) spectrometer as a reference, a common scaling factor has been derived for the XCO2 and XCH4 products, which ensures that the records are traceable to the WMO in situ scale.


2017 ◽  
Vol 17 (11) ◽  
pp. 6663-6678 ◽  
Author(s):  
Shreeya Verma ◽  
Julia Marshall ◽  
Mark Parrington ◽  
Anna Agustí-Panareda ◽  
Sebastien Massart ◽  
...  

Abstract. Airborne observations of greenhouse gases are a very useful reference for validation of satellite-based column-averaged dry air mole fraction data. However, since the aircraft data are available only up to about 9–13 km altitude, these profiles do not fully represent the depth of the atmosphere observed by satellites and therefore need to be extended synthetically into the stratosphere. In the near future, observations of CO2 and CH4 made from passenger aircraft are expected to be available through the In-Service Aircraft for a Global Observing System (IAGOS) project. In this study, we analyse three different data sources that are available for the stratospheric extension of aircraft profiles by comparing the error introduced by each of them into the total column and provide recommendations regarding the best approach. First, we analyse CH4 fields from two different models of atmospheric composition – the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System for Composition (C-IFS) and the TOMCAT/SLIMCAT 3-D chemical transport model. Secondly, we consider scenarios that simulate the effect of using CH4 climatologies such as those based on balloons or satellite limb soundings. Thirdly, we assess the impact of using a priori profiles used in the satellite retrievals for the stratospheric part of the total column. We find that the models considered in this study have a better estimation of the stratospheric CH4 as compared to the climatology-based data and the satellite a priori profiles. Both the C-IFS and TOMCAT models have a bias of about −9 ppb at the locations where tropospheric vertical profiles will be measured by IAGOS. The C-IFS model, however, has a lower random error (6.5 ppb) than TOMCAT (12.8 ppb). These values are well within the minimum desired accuracy and precision of satellite total column XCH4 retrievals (10 and 34 ppb, respectively). In comparison, the a priori profile from the University of Leicester Greenhouse Gases Observing Satellite (GOSAT) Proxy XCH4 retrieval and climatology-based data introduce larger random errors in the total column, being limited in spatial coverage and temporal variability. Furthermore, we find that the bias in the models varies with latitude and season. Therefore, applying appropriate bias correction to the model fields before using them for profile extension is expected to further decrease the error contributed by the stratospheric part of the profile to the total column.


2014 ◽  
Vol 7 (10) ◽  
pp. 3337-3354 ◽  
Author(s):  
M. Pastel ◽  
J.-P. Pommereau ◽  
F. Goutail ◽  
A. Richter ◽  
A. Pazmiño ◽  
...  

Abstract. Long time series of ozone and NO2 total column measurements in the southern tropics are available from two ground-based SAOZ (Système d'Analyse par Observation Zénithale) UV-visible spectrometers operated within the Network for the Detection of Atmospheric Composition Change (NDACC) in Bauru (22° S, 49° W) in S-E Brazil since 1995 and Reunion Island (21° S, 55° E) in the S-W Indian Ocean since 1993. Although the stations are located at the same latitude, significant differences are observed in the columns of both species, attributed to differences in tropospheric content and equivalent latitude in the lower stratosphere. These data are used to identify which satellites operating during the same period, are capturing the same features and are thus best suited for building reliable merged time series for trend studies. For ozone, the satellites series best matching SAOZ observations are EP-TOMS (1995–2004) and OMI-TOMS (2005–2011), whereas for NO2, best results are obtained by combining GOME version GDP5 (1996–2003) and SCIAMACHY – IUP (2003–2011), displaying lower noise and seasonality in reference to SAOZ. Both merged data sets are fully consistent with the larger columns of the two species above South America and the seasonality of the differences between the two stations, reported by SAOZ, providing reliable time series for further trend analyses and identification of sources of interannual variability in the future analysis.


Sign in / Sign up

Export Citation Format

Share Document