scholarly journals The Influence of Instrumental Line Shape Degradation on the Partial Columns of O3, CO,CH4 and N2O Derived from High-Resolution FTIR spectrometry

2018 ◽  
Vol 10 (12) ◽  
pp. 2041 ◽  
Author(s):  
Youwen Sun ◽  
Cheng Liu ◽  
Kalok Chan ◽  
Wei Wang ◽  
Changong Shan ◽  
...  

High resolution Fourier transform infrared (FTIR) measurement of direct sunlight does not only provide information of trace gas total columns, but also vertical distribution. Measured O3, CO, CH4, and N2O can be separated into multiple partial columns using the optimal estimation method (OEM). The retrieval of trace gas profiles is sensitive to the instrument line shape (ILS) of the FTIR spectrometer. In this paper, we present an investigation of the influence of ILS degradation on the partial column retrieval of O3, CO, CH4, and N2O. Sensitivities of the partial column, error, and degrees of freedom (DOFs) of each layer to different levels of ILS degradation for O3, CO, CH4, and N2O are estimated. We then evaluate the impact of ILS degradation on the long-term measurements. In addition, we derive the range of ILS degradation corresponding to the acceptable uncertainties of O3, CO, CH4, and N2O results. The results show that the uncertainties induced by the ILS degradation on the absolute value, error, and the DOFs of the partial column are altitude and gas species dependent. The uncertainties of the partial columns of O3 and CO are larger than those on CH4 and N2O. The stratospheric partial columns are more sensitive to the ILS degradation compared to the tropospheric part. Our result improves the understanding of the ILS degradation on the FTIR measurements, which is important for the quantification of the measurement uncertainties and minimizes the bias of the inter-comparison between different measurement platforms. This is especially useful for the validation of satellite observations, the data assimilation of chemical model simulations, and the quantification of the source/sink/trend from the FTIR measurements.

2018 ◽  
Vol 11 (5) ◽  
pp. 2879-2896 ◽  
Author(s):  
Youwen Sun ◽  
Mathias Palm ◽  
Cheng Liu ◽  
Frank Hase ◽  
David Griffith ◽  
...  

Abstract. We simulated instrumental line shape (ILS) degradations with respect to typical types of misalignment, and compared their influence on each NDACC (Network for Detection of Atmospheric Composition Change) gas. The sensitivities of the total column, the root mean square (rms) of the fitting residual, the total random uncertainty, the total systematic uncertainty, the total uncertainty, degrees of freedom for signal (DOFs), and the profile with respect to different levels of ILS degradation for all current standard NDACC gases, i.e. O3, HNO3, HCl, HF, ClONO2, CH4, CO, N2O, C2H6, and HCN, were investigated. The influence of an imperfect ILS on NDACC gases' retrieval was assessed, and the consistency under different meteorological conditions and solar zenith angles (SZAs) were examined. The study concluded that the influence of ILS degradation can be approximated by the linear sum of individual modulation efficiency (ME) amplitude influence and phase error (PE) influence. The PE influence is of secondary importance compared with the ME amplitude. Generally, the stratospheric gases are more sensitive to ILS degradation than the tropospheric gases, and the positive ME influence is larger than the negative ME. For a typical ILS degradation (10 %), the total columns of stratospheric gases O3, HNO3, HCl, HF, and ClONO2 changed by 1.9, 0.7, 4, 3, and 23 %, respectively, while the columns of tropospheric gases CH4, CO, N2O, C2H6, and HCN changed by 0.04, 2.1, 0.2, 1.1, and 0.75 %, respectively. In order to suppress the fractional difference in the total column for ClONO2 and other NDACC gases within 10 and 1 %, respectively, the maximum positive ME degradations for O3, HNO3, HCl, HF, ClONO2, CO, C2H6, and HCN should be less than 6, 15, 5, 5, 5, 5, 9, and 13 %, respectively; the maximum negative ME degradations for O3, HCl, and HF should be less than 6, 12, and 12 %, respectively; the influence of ILS degradation on CH4 and N2O can be regarded as being negligible.


2017 ◽  
Vol 10 (3) ◽  
pp. 989-997 ◽  
Author(s):  
Youwen Sun ◽  
Mathias Palm ◽  
Christine Weinzierl ◽  
Christof Petri ◽  
Justus Notholt ◽  
...  

Abstract. The TCCON (Total Carbon Column Observing Network) and most NDACC (Network for Detection of Atmospheric Composition Change) sites assume an ideal ILS (instrumental line shape) for analysis of the spectra. In order to adapt the radiant energy received by the detector, an attenuator or different sizes of field stop can be inserted in the light path. These processes may alter the alignment of a high-resolution FTIR (Fourier transform infrared) spectrometer, and may result in bias due to ILS drift. In this paper, we first investigated the sensitivity of the ILS monitoring with respect to application of different kinds of attenuators for ground-based high-resolution FTIR spectrometers within the TCCON and NDACC networks. Both lamp and sun cell measurements were conducted after the insertion of five different attenuators in front of and behind the interferometer. The ILS characteristics derived from lamp and sun spectra are in good agreement. ILSs deduced from all lamp cell measurements were compared. As a result, the disturbances to the ILS of a high-resolution FTIR spectrometer with respect to the insertion of different attenuators at different positions were quantified. A potential strategy to adapt the incident intensity of a detector was finally deduced.


2005 ◽  
Vol 5 (1) ◽  
pp. 17-66 ◽  
Author(s):  
J. Meyer ◽  
A. Bracher ◽  
A. Rozanov ◽  
A. C. Schlesier ◽  
H. Bovensmann ◽  
...  

Abstract. This presentation concentrates on solar occultation measurements with the spaceborne spectrometer SCIAMACHY in the UV-Vis wavelength range. Solar occultation measurements provide unique information about the vertical distribution of atmospheric constituents. For retrieval of vertical trace gas concentration profiles, an algorithm has been developed based on the optimal estimation method. The forward model is capable to simulate the extinction signals of different species as they occur in atmospheric transmission spectra obtained from occultation measurements. Furthermore, correction algorithms have been implemented to address shortcomings of the tangent height pre-processing and inhomogeneities of measured solar spectra. First results of O3 and NO2 vertical profile retrievals have been validated with data from ozone sondes and satellite based occultation instruments. The validation shows very promising results for SCIAMACHY O3 and NO2 values between 15 to 35 km with errors in the order of 10% and 15%, respectively.


2005 ◽  
Vol 5 (6) ◽  
pp. 1665-1677 ◽  
Author(s):  
A. von Engeln ◽  
G. Nedoluha

Abstract. The Optimal Estimation Method is used to retrieve temperature and water vapor profiles from simulated radio occultation measurements in order to assess how different retrieval schemes may affect the assimilation of this data. High resolution ECMWF global fields are used by a state-of-the-art radio occultation simulator to provide quasi-realistic bending angle and refractivity profiles. Both types of profiles are used in the retrieval process to assess their advantages and disadvantages. The impact of the GPS measurement is expressed as an improvement over the a priori knowledge (taken from a 24h old analysis). Large improvements are found for temperature in the upper troposphere and lower stratosphere. Only very small improvements are found in the lower troposphere, where water vapor is present. Water vapor improvements are only significant between about 1 km to 7 km. No pronounced difference is found between retrievals based upon bending angles or refractivity. Results are compared to idealized retrievals, where the atmosphere is spherically symmetric and instrument noise is not included. Comparing idealized to quasi-realistic calculations shows that the main impact of a ray tracing algorithm can be expected for low latitude water vapor, where the horizontal variability is high. We also address the effect of altitude correlations in the temperature and water vapor. Overall, we find that water vapor and temperature retrievals using bending angle profiles are more CPU intensive than refractivity profiles, but that they do not provide significantly better results.


2015 ◽  
Vol 15 (12) ◽  
pp. 16615-16654 ◽  
Author(s):  
U. Jeong ◽  
J. Kim ◽  
C. Ahn ◽  
O. Torres ◽  
X. Liu ◽  
...  

Abstract. An online version of the OMI (Ozone Monitoring Instrument) near-ultraviolet (UV) aerosol retrieval algorithm was developed to retrieve aerosol optical thickness (AOT) and single scattering albedo (SSA) based on the optimal estimation (OE) method. Instead of using the traditional look-up tables for radiative transfer calculations, it performs online radiative transfer calculations with the Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) model to eliminate interpolation errors and improve stability. The OE-based algorithm has the merit of providing useful estimates of uncertainties simultaneously with the inversion products. The measurements and inversion products of the Distributed Regional Aerosol Gridded Observation Network campaign in Northeast Asia (DRAGON NE-Asia 2012) were used to validate the retrieved AOT and SSA. The retrieved AOT and SSA at 388 nm have a correlation with the Aerosol Robotic Network (AERONET) products that is comparable to or better than the correlation with the operational product during the campaign. The estimated retrieval noise and smoothing error perform well in representing the envelope curve of actual biases of AOT at 388 nm between the retrieved AOT and AERONET measurements. The forward model parameter errors were analyzed separately for both AOT and SSA retrievals. The surface albedo at 388 nm, the imaginary part of the refractive index at 354 nm, and the number fine mode fraction (FMF) were found to be the most important parameters affecting the retrieval accuracy of AOT, while FMF was the most important parameter for the SSA retrieval. The additional information provided with the retrievals, including the estimated error and degrees of freedom, is expected to be valuable for future studies.


2005 ◽  
Vol 5 (11) ◽  
pp. 2901-2914 ◽  
Author(s):  
B. Barret ◽  
S. Turquety ◽  
D. Hurtmans ◽  
C. Clerbaux ◽  
J. Hadji-Lazaro ◽  
...  

Abstract. This paper presents the first global distributions of CO vertical profiles retrieved from a thermal infrared FTS working in the nadir geometry. It is based on the exploitation of the high resolution and high quality spectra measured by the Interferometric Monitor of Greenhouse gases (IMG) which flew onboard the Japanese ADEOS platform in 1996-1997. The retrievals are performed with an algorithm based on the Optimal Estimation Method (OEM) and are characterized in terms of vertical sensitivity and error budget. It is found that most of the IMG measurements contain between 1.5 and 2.2 independent pieces of information about the vertical distribution of CO from the lower troposphere to the upper troposphere-lower stratosphere (UTLS). The retrievals are validated against coincident NOAA/CMDL in situ surface measurements and NDSC/FTIR total columns measurements. The retrieved global distributions of CO are also found to be in good agreement with the distributions modeled by the GEOS-CHEM 3D CTM, highlighting the ability of IMG to capture the horizontal as well as the vertical structure of the CO distributions.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 840 ◽  
Author(s):  
Salam A. Abbas ◽  
Yunqing Xuan

Effective representation of precipitation inputs is one of the essential components in hydrological model structures, especially when gauge measurements for the modelled catchment are sparse. Assessment of the impact of precipitation pre-processing is often nontrivial as precipitation data are very limited in the first place. In this paper, we demonstrate a study using a semi-distributed hydrological model, the Soil and Water Assessment Tool (SWAT) to examine the impact of different precipitation pre-processing methods on model calibration and the overall model performance with regards to the operational use. A river catchment in the UK is modelled to test against the three pre-processing methods: the Centroid Point Estimation Method (CPEM), the Grid Area Method (GAM) and the Grid Point Method (GPM). Cross-calibration and validation are then carried out by using the high-resolution Centre for Ecology & Hydrology–Gridded Estimate Areal Rainfall (CEH-GEAR) dataset. The results show that the proposed methods GAM and GPM can improve the model calibration significantly against the one calibrated with the existing CPEM method used by the model; the performance differences in the validation among the calibrated models, however, remain small and become irrelevant. The findings indicate that it is preferable to always make use of high-quality rainfall data, when available, with a better pre-processing method, even with models that are previously calibrated with low-quality rainfall inputs. It is also shown that such improvements are affected by the size of catchment and become less significant for smaller catchments.


2006 ◽  
Vol 45 (1) ◽  
pp. 20-41 ◽  
Author(s):  
Tristan S. L’Ecuyer ◽  
Philip Gabriel ◽  
Kyle Leesman ◽  
Steven J. Cooper ◽  
Graeme L. Stephens

Abstract The importance of accurately representing the role of clouds in climate change studies has become increasingly apparent in recent years, leading to a substantial increase in the number of satellite sensors and associated algorithms that are devoted to measuring the global distribution of cloud properties. The physics governing the radiative transfer through clouds is well understood, but the impact of uncertainties in algorithm assumptions and the true information content of the measurements in the inverse retrieval problem are generally not as clear, making it difficult to determine the best product to adopt for any particular application. This paper applies information theory to objectively analyze the problem of liquid cloud retrievals from an observing system modeled after the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument currently operating on the Aqua and Terra platforms. It is found that four diagnostics—the retrieval error covariance, the information content, the number of degrees of freedom for signal, and the effective rank of the problem—provide a rigorous test of an observing system. Based on these diagnostics, the combination of the 0.64- and 1.64-μm channels during the daytime and the 3.75- and 11.0-μm channels at night provides the most information for retrieving the properties of the wide variety of liquid clouds modeled. With an eye toward developing a coherent representation of the global distribution of cloud microphysical and radiative properties, these four channels may be integrated into a suitable multichannel inversion methodology such as the optimal estimation or Bayesian techniques to provide a common framework for cloud retrievals under varying conditions. The expected resolution of the observing system for such liquid cloud microphysical property retrievals over a wide variety of liquid cloud is also explored.


2019 ◽  
Author(s):  
Sieglinde Callewaert ◽  
Sophie Vandenbussche ◽  
Nicolas Kumps ◽  
Arve Kylling ◽  
Xiaoxia Shang ◽  
...  

Abstract. The Mineral Aerosol Profiling from Infrared Radiances (MAPIR) algorithm retrieves vertical dust concentration profiles from cloud-free IASI thermal infrared (TIR) radiances using the Rodgers Optimal Estimation Method (OEM). We describe the new version 4.1 and validation results. Main differences with respect to previous versions are the Levenberg-Marquardt modification of the OEM, the use of the logarithm of the concentration in the retrieval and the use of RTTOV for in-line radiative transfer calculations. The dust aerosol concentrations are retrieved in seven 1 km thick layers centered at 0.5 to 6.5 km. A global data set of the daily dust distribution was generated with MAPIR v4.1 covering September 2007 to June 2018, with further extensions planned every six months. The post-retrieval quality filters reject about 16 % of the retrievals, a huge improvement with respect to the previous versions where up to 40 % of the retrievals were of bad quality. The median difference between the observed and fitted spectra of the good quality retrievals is 0.32 K, with lower values over oceans. The information content of the retrieved profiles shows dependency on the total aerosol load due to the assumption of a log-normal state vector. The median degrees of freedom in dusty scenes (min 10 µm AOD of 0.5) is 1.4. A validation of the aerosol optical depth (AOD) obtained from the integrated MAPIR v4.1 profiles was performed against 72 AERONET stations. The MAPIR AOD correlates well with the ground-based data with a mean correlation coefficient of 0.66 and values as high as 0.88. Overall, there is a mean AOD (500 nm) negative bias of only 0.04 with respect to AERONET, which is an extremely good result. The previous versions of MAPIR were known to largely overestimate AOD (about 0.28 for v3). A second validation exercise was performed comparing the mean aerosol layer altitude from MAPIR with the mean dust altitude from CALIOP. A small underestimation was found, with a mean difference of about 350 m (standard deviation of about 1 km) with respect to the CALIOP cumulative extinction altitude, which is again considered very good as the vertical resolution of MAPIR is 1 km. In the comparisons against AERONET and CALIOP, a dependency of MAPIR on the quality of the temperature profiles used in the retrieval is observed. Finally, a qualitative comparison of dust aerosol concentration profiles was done against lidar measurements from two ground-based stations (M'Bour and Al Dhaid) and from the CATS instrument onboard the ISS. MAPIR v4.1 showed the ability to detect dust plumes at the same time and with a similar extent as the lidar instruments. This new MAPIR version shows a great improvement of the accuracy of the aerosol profile retrievals with respect to previous versions, especially so for the integrated AOD. It now offers a unique 3-D dust data set, which can be used to gain more insight in the transport and emission processes of mineral dust aerosols.


Sign in / Sign up

Export Citation Format

Share Document