scholarly journals Evaluation of Machine Learning Algorithms for Classification of Primary Biological Aerosol using a new UV-LIF spectrometer

Author(s):  
Simon Ruske ◽  
David O. Topping ◽  
Virginia E. Foot ◽  
Paul H. Kaye ◽  
Warren R. Stanley ◽  
...  

Abstract. Characterisation of bio-aerosols has important implications within Environment and Public Health sectors. Recent developments in Ultra-Violet Light Induced Fluorescence (UV-LIF) detectors such as the Wideband Integrated bio-aerosol Spectrometer (WIBS) and the newly introduced Multiparameter bio-aerosol Spectrometer (MBS) has allowed for the real time collection of fluorescence, size and morphology measurements for the purpose of discriminating between bacteria, fungal Spores and pollen. This new generation of instruments has enabled ever larger data sets to be compiled with the aim of studying more complex environments. In real world data sets, particularly those from an urban environment, the population may be dominated by non-biological fluorescent interferents bringing into question the accuracy of measurements of quantities such as concentrations. It is therefore imperative that we validate the performance of different algorithms which can be used for the task of classification. For unsupervised learning we test Hierarchical Agglomerative Clustering with various different linkages. For supervised learning, ten methods were tested; including decision trees, ensemble methods: Random Forests, Gradient Boosting and AdaBoost; two implementations for support vector machines: libsvm and liblinear; Gaussian methods: Gaussian naïve Bayesian, quadratic and linear discriminant analysis and finally the k-nearest neighbours algorithm. The methods were applied to two different data sets measured using a new Multiparameter bio-aerosol Spectrometer which provides multichannel UV-LIF fluorescence signatures for single airborne biological particles. Clustering, in general performs slightly worse than the supervised learning methods correctly classifying, at best, only 72.7 and 91.1 percent for the two data sets respectively. For supervised learning the gradient boosting algorithm was found to be the most effective, on average correctly classifying 88.1 and 97.8 percent of the testing data respectively across the two data sets.

2017 ◽  
Vol 10 (2) ◽  
pp. 695-708 ◽  
Author(s):  
Simon Ruske ◽  
David O. Topping ◽  
Virginia E. Foot ◽  
Paul H. Kaye ◽  
Warren R. Stanley ◽  
...  

Abstract. Characterisation of bioaerosols has important implications within environment and public health sectors. Recent developments in ultraviolet light-induced fluorescence (UV-LIF) detectors such as the Wideband Integrated Bioaerosol Spectrometer (WIBS) and the newly introduced Multiparameter Bioaerosol Spectrometer (MBS) have allowed for the real-time collection of fluorescence, size and morphology measurements for the purpose of discriminating between bacteria, fungal spores and pollen.This new generation of instruments has enabled ever larger data sets to be compiled with the aim of studying more complex environments. In real world data sets, particularly those from an urban environment, the population may be dominated by non-biological fluorescent interferents, bringing into question the accuracy of measurements of quantities such as concentrations. It is therefore imperative that we validate the performance of different algorithms which can be used for the task of classification.For unsupervised learning we tested hierarchical agglomerative clustering with various different linkages. For supervised learning, 11 methods were tested, including decision trees, ensemble methods (random forests, gradient boosting and AdaBoost), two implementations for support vector machines (libsvm and liblinear) and Gaussian methods (Gaussian naïve Bayesian, quadratic and linear discriminant analysis, the k-nearest neighbours algorithm and artificial neural networks).The methods were applied to two different data sets produced using the new MBS, which provides multichannel UV-LIF fluorescence signatures for single airborne biological particles. The first data set contained mixed PSLs and the second contained a variety of laboratory-generated aerosol.Clustering in general performs slightly worse than the supervised learning methods, correctly classifying, at best, only 67. 6 and 91. 1 % for the two data sets respectively. For supervised learning the gradient boosting algorithm was found to be the most effective, on average correctly classifying 82. 8 and 98. 27 % of the testing data, respectively, across the two data sets.A possible alternative to gradient boosting is neural networks. We do however note that this method requires much more user input than the other methods, and we suggest that further research should be conducted using this method, especially using parallelised hardware such as the GPU, which would allow for larger networks to be trained, which could possibly yield better results.We also saw that some methods, such as clustering, failed to utilise the additional shape information provided by the instrument, whilst for others, such as the decision trees, ensemble methods and neural networks, improved performance could be attained with the inclusion of such information.


Author(s):  
Zhenxing Wu ◽  
Minfeng Zhu ◽  
Yu Kang ◽  
Elaine Lai-Han Leung ◽  
Tailong Lei ◽  
...  

Abstract Although a wide variety of machine learning (ML) algorithms have been utilized to learn quantitative structure–activity relationships (QSARs), there is no agreed single best algorithm for QSAR learning. Therefore, a comprehensive understanding of the performance characteristics of popular ML algorithms used in QSAR learning is highly desirable. In this study, five linear algorithms [linear function Gaussian process regression (linear-GPR), linear function support vector machine (linear-SVM), partial least squares regression (PLSR), multiple linear regression (MLR) and principal component regression (PCR)], three analogizers [radial basis function support vector machine (rbf-SVM), K-nearest neighbor (KNN) and radial basis function Gaussian process regression (rbf-GPR)], six symbolists [extreme gradient boosting (XGBoost), Cubist, random forest (RF), multiple adaptive regression splines (MARS), gradient boosting machine (GBM), and classification and regression tree (CART)] and two connectionists [principal component analysis artificial neural network (pca-ANN) and deep neural network (DNN)] were employed to learn the regression-based QSAR models for 14 public data sets comprising nine physicochemical properties and five toxicity endpoints. The results show that rbf-SVM, rbf-GPR, XGBoost and DNN generally illustrate better performances than the other algorithms. The overall performances of different algorithms can be ranked from the best to the worst as follows: rbf-SVM > XGBoost > rbf-GPR > Cubist > GBM > DNN > RF > pca-ANN > MARS > linear-GPR ≈ KNN > linear-SVM ≈ PLSR > CART ≈ PCR ≈ MLR. In terms of prediction accuracy and computational efficiency, SVM and XGBoost are recommended to the regression learning for small data sets, and XGBoost is an excellent choice for large data sets. We then investigated the performances of the ensemble models by integrating the predictions of multiple ML algorithms. The results illustrate that the ensembles of two or three algorithms in different categories can indeed improve the predictions of the best individual ML algorithms.


2020 ◽  
Vol 8 (6) ◽  
pp. 3226-3232

Predicting the probability of hospital readmission is one of the most vital issues and is considered to be an important research area in the healthcare sector. For curing any of the diseases that might arise, there shall be some essential resources such as medical staff, expertise, beds and rooms. This secures getting excellent medical service. For example, heart failure (HF) or diabetes is a syndrome that could reduce the living quality of patients and has a serious influence on systems of healthcare. The previously mentioned diseases can result in high rate of readmission and hence high rate of costs as well. In this case, algorithms of machine learning are utilized to curb readmissions levels and improve the life quality of patients. Unluckily, a comparatively few numbers of researches in the literature endeavored to address this issue while a large proportion of researches were interested in predicting the probability of detecting diseases. Despite there is a plainly visible shortage on this topic, this paper seeks to spot most of the studies related to predict the probability of hospital readmission by the usage of machine learning techniques such as such as Logistic Regression (LR), Support Vector Machine (SVM), Artificial Neural Networks (ANNs), Linear Discriminant Analysis (LDA), Bayes algorithm, Random Forest (RF), Decision Trees (DTs), AdaBoost and Gradient Boosting (GB). Specifically, we explore the different techniques used in a medical area under the machine learning research field. In addition, we define four features that are used as criteria for an effective comparison among the employed techniques. These features include goal, data size, method, and performance. Furthermore, some recommendations are drawn from the comparison which is related to the selection of the best techniques in the medical field. Based on the outcomes of this research, it was found out that (bagging and DT) is the best technique to predict diabetes, whereas SVM is the best technique when it comes to prediction the breast cancer, and hospital readmission.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4068
Author(s):  
Xu Huang ◽  
Mirna Wasouf ◽  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Cracks typically develop in concrete due to shrinkage, loading actions, and weather conditions; and may occur anytime in its life span. Autogenous healing concrete is a type of self-healing concrete that can automatically heal cracks based on physical or chemical reactions in concrete matrix. It is imperative to investigate the healing performance that autogenous healing concrete possesses, to assess the extent of the cracking and to predict the extent of healing. In the research of self-healing concrete, testing the healing performance of concrete in a laboratory is costly, and a mass of instances may be needed to explore reliable concrete design. This study is thus the world’s first to establish six types of machine learning algorithms, which are capable of predicting the healing performance (HP) of self-healing concrete. These algorithms involve an artificial neural network (ANN), a k-nearest neighbours (kNN), a gradient boosting regression (GBR), a decision tree regression (DTR), a support vector regression (SVR) and a random forest (RF). Parameters of these algorithms are tuned utilising grid search algorithm (GSA) and genetic algorithm (GA). The prediction performance indicated by coefficient of determination (R2) and root mean square error (RMSE) measures of these algorithms are evaluated on the basis of 1417 data sets from the open literature. The results show that GSA-GBR performs higher prediction performance (R2GSA-GBR = 0.958) and stronger robustness (RMSEGSA-GBR = 0.202) than the other five types of algorithms employed to predict the healing performance of autogenous healing concrete. Therefore, reliable prediction accuracy of the healing performance and efficient assistance on the design of autogenous healing concrete can be achieved.


2021 ◽  
Vol 10 (1) ◽  
pp. 42
Author(s):  
Kieu Anh Nguyen ◽  
Walter Chen ◽  
Bor-Shiun Lin ◽  
Uma Seeboonruang

Although machine learning has been extensively used in various fields, it has only recently been applied to soil erosion pin modeling. To improve upon previous methods of quantifying soil erosion based on erosion pin measurements, this study explored the possible application of ensemble machine learning algorithms to the Shihmen Reservoir watershed in northern Taiwan. Three categories of ensemble methods were considered in this study: (a) Bagging, (b) boosting, and (c) stacking. The bagging method in this study refers to bagged multivariate adaptive regression splines (bagged MARS) and random forest (RF), and the boosting method includes Cubist and gradient boosting machine (GBM). Finally, the stacking method is an ensemble method that uses a meta-model to combine the predictions of base models. This study used RF and GBM as the meta-models, decision tree, linear regression, artificial neural network, and support vector machine as the base models. The dataset used in this study was sampled using stratified random sampling to achieve a 70/30 split for the training and test data, and the process was repeated three times. The performance of six ensemble methods in three categories was analyzed based on the average of three attempts. It was found that GBM performed the best among the ensemble models with the lowest root-mean-square error (RMSE = 1.72 mm/year), the highest Nash-Sutcliffe efficiency (NSE = 0.54), and the highest index of agreement (d = 0.81). This result was confirmed by the spatial comparison of the absolute differences (errors) between model predictions and observations using GBM and RF in the study area. In summary, the results show that as a group, the bagging method and the boosting method performed equally well, and the stacking method was third for the erosion pin dataset considered in this study.


Author(s):  
Gudipally Chandrashakar

In this article, we used historical time series data up to the current day gold price. In this study of predicting gold price, we consider few correlating factors like silver price, copper price, standard, and poor’s 500 value, dollar-rupee exchange rate, Dow Jones Industrial Average Value. Considering the prices of every correlating factor and gold price data where dates ranging from 2008 January to 2021 February. Few algorithms of machine learning are used to analyze the time-series data are Random Forest Regression, Support Vector Regressor, Linear Regressor, ExtraTrees Regressor and Gradient boosting Regression. While seeing the results the Extra Tree Regressor algorithm gives the predicted value of gold prices more accurately.


2018 ◽  
Vol 7 (2.28) ◽  
pp. 312
Author(s):  
Manu Kohli

Asset intensive Organizations have searched long for a framework model that would timely predict equipment failure. Timely prediction of equipment failure substantially reduces direct and indirect costs, unexpected equipment shut-downs, accidents, and unwarranted emission risk. In this paper, the author proposes a model that can predict equipment failure by using data from SAP Plant Maintenance module. To achieve that author has applied data extraction algorithm and numerous data manipulations to prepare a classification data model consisting of maintenance records parameters such as spare parts usage, time elapsed since last completed maintenance and the period to the next scheduled maintained and so on. By using unsupervised learning technique of clustering, the author observed a class to cluster evaluation of 80% accuracy. After that classifier model was trained using various machine language (ML) algorithms and subsequently tested on mutually exclusive data sets with an objective to predict equipment breakdown. The classifier model using ML algorithms such as Support Vector Machine (SVM) and Decision Tree (DT) returned an accuracy and true positive rate (TPR) of greater than 95% to predict equipment failure. The proposed model acts as an Advanced Intelligent Control system contributing to the Cyber-Physical Systems for asset intensive organizations. 


2018 ◽  
Vol 11 (11) ◽  
pp. 6203-6230 ◽  
Author(s):  
Simon Ruske ◽  
David O. Topping ◽  
Virginia E. Foot ◽  
Andrew P. Morse ◽  
Martin W. Gallagher

Abstract. Primary biological aerosol including bacteria, fungal spores and pollen have important implications for public health and the environment. Such particles may have different concentrations of chemical fluorophores and will respond differently in the presence of ultraviolet light, potentially allowing for different types of biological aerosol to be discriminated. Development of ultraviolet light induced fluorescence (UV-LIF) instruments such as the Wideband Integrated Bioaerosol Sensor (WIBS) has allowed for size, morphology and fluorescence measurements to be collected in real-time. However, it is unclear without studying instrument responses in the laboratory, the extent to which different types of particles can be discriminated. Collection of laboratory data is vital to validate any approach used to analyse data and ensure that the data available is utilized as effectively as possible. In this paper a variety of methodologies are tested on a range of particles collected in the laboratory. Hierarchical agglomerative clustering (HAC) has been previously applied to UV-LIF data in a number of studies and is tested alongside other algorithms that could be used to solve the classification problem: Density Based Spectral Clustering and Noise (DBSCAN), k-means and gradient boosting. Whilst HAC was able to effectively discriminate between reference narrow-size distribution PSL particles, yielding a classification error of only 1.8 %, similar results were not obtained when testing on laboratory generated aerosol where the classification error was found to be between 11.5 % and 24.2 %. Furthermore, there is a large uncertainty in this approach in terms of the data preparation and the cluster index used, and we were unable to attain consistent results across the different sets of laboratory generated aerosol tested. The lowest classification errors were obtained using gradient boosting, where the misclassification rate was between 4.38 % and 5.42 %. The largest contribution to the error, in the case of the higher misclassification rate, was the pollen samples where 28.5 % of the samples were incorrectly classified as fungal spores. The technique was robust to changes in data preparation provided a fluorescent threshold was applied to the data. In the event that laboratory training data are unavailable, DBSCAN was found to be a potential alternative to HAC. In the case of one of the data sets where 22.9 % of the data were left unclassified we were able to produce three distinct clusters obtaining a classification error of only 1.42 % on the classified data. These results could not be replicated for the other data set where 26.8 % of the data were not classified and a classification error of 13.8 % was obtained. This method, like HAC, also appeared to be heavily dependent on data preparation, requiring a different selection of parameters depending on the preparation used. Further analysis will also be required to confirm our selection of the parameters when using this method on ambient data. There is a clear need for the collection of additional laboratory generated aerosol to improve interpretation of current databases and to aid in the analysis of data collected from an ambient environment. New instruments with a greater resolution are likely to improve on current discrimination between pollen, bacteria and fungal spores and even between different species, however the need for extensive laboratory data sets will grow as a result.


Healthcare ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1334
Author(s):  
Hasan Symum ◽  
José Zayas-Castro

The timing of 30-day pediatric readmissions is skewed with approximately 40% of the incidents occurring within the first week of hospital discharges. The skewed readmission time distribution coupled with delay in health information exchange among healthcare providers might offer a limited time to devise a comprehensive intervention plan. However, pediatric readmission studies are thus far limited to the development of the prediction model after hospital discharges. In this study, we proposed a novel pediatric readmission prediction model at the time of hospital admission which can improve the high-risk patient selection process. We also compared proposed models with the standard at-discharge readmission prediction model. Using the Hospital Cost and Utilization Project database, this prognostic study included pediatric hospital discharges in Florida from January 2016 through September 2017. Four machine learning algorithms—logistic regression with backward stepwise selection, decision tree, Support Vector machines (SVM) with the polynomial kernel, and Gradient Boosting—were developed for at-admission and at-discharge models using a recursive feature elimination technique with a repeated cross-validation process. The performance of the at-admission and at-discharge model was measured by the area under the curve. The performance of the at-admission model was comparable with the at-discharge model for all four algorithms. SVM with Polynomial Kernel algorithms outperformed all other algorithms for at-admission and at-discharge models. Important features associated with increased readmission risk varied widely across the type of prediction model and were mostly related to patients’ demographics, social determinates, clinical factors, and hospital characteristics. Proposed at-admission readmission risk decision support model could help hospitals and providers with additional time for intervention planning, particularly for those targeting social determinants of children’s overall health.


Author(s):  
Noor Asyikin Sulaiman ◽  
Md Pauzi Abdullah ◽  
Hayati Abdullah ◽  
Muhammad Noorazlan Shah Zainudin ◽  
Azdiana Md Yusop

Air conditioning system is a complex system and consumes the most energy in a building. Any fault in the system operation such as cooling tower fan faulty, compressor failure, damper stuck, etc. could lead to energy wastage and reduction in the system’s coefficient of performance (COP). Due to the complexity of the air conditioning system, detecting those faults is hard as it requires exhaustive inspections. This paper consists of two parts; i) to investigate the impact of different faults related to the air conditioning system on COP and ii) to analyse the performances of machine learning algorithms to classify those faults. Three supervised learning classifier models were developed, which were deep learning, support vector machine (SVM) and multi-layer perceptron (MLP). The performances of each classifier were investigated in terms of six different classes of faults. Results showed that different faults give different negative impacts on the COP. Also, the three supervised learning classifier models able to classify all faults for more than 94%, and MLP produced the highest accuracy and precision among all.


Sign in / Sign up

Export Citation Format

Share Document