scholarly journals A SEMI-EMPIRICAL TOPOGRAPHIC CORRECTION MODEL FOR MULTI-SOURCE SATELLITE IMAGES

Author(s):  
Sa Xiao ◽  
Xinpeng Tian ◽  
Qiang Liu ◽  
Jianguang Wen ◽  
Yushuang Ma ◽  
...  

Topographic correction of surface reflectance in rugged terrain areas is the prerequisite for the quantitative application of remote sensing in mountainous areas. Physics-based radiative transfer model can be applied to correct the topographic effect and accurately retrieve the reflectance of the slope surface from high quality satellite image such as Landsat8 OLI. However, as more and more images data available from various of sensors, some times we can not get the accurate sensor calibration parameters and atmosphere conditions which are needed in the physics-based topographic correction model. This paper proposed a semi-empirical atmosphere and topographic corrction model for muti-source satellite images without accurate calibration parameters.Based on this model we can get the topographic corrected surface reflectance from DN data, and we tested and verified this model with image data from Chinese satellite HJ and GF. The result shows that the correlation factor was reduced almost 85 % for near infrared bands and the classification overall accuracy of classification increased 14 % after correction for HJ. The reflectance difference of slope face the sun and face away the sun have reduced after correction.

2018 ◽  
Author(s):  
Alba Lorente ◽  
K. Folkert Boersma ◽  
Piet Stammes ◽  
L. Gijsbert Tilstra ◽  
Andreas Richter ◽  
...  

Abstract. The angular distribution of the light reflected by the Earth's surface influences top-of-atmosphere (TOA) reflectance values. This surface reflectance anisotropy has implications for UV/Vis satellite retrievals of albedo, clouds, and trace gases such as nitrogen dioxide (NO2). These retrievals routinely assume the surface to reflect light isotropically. Here we show that cloud fractions retrieved from GOME-2A and OMI with the FRESCO and OMCLDO2 algorithms have an East-West bias of 10 % to 50 % over rugged terrain, and that this bias originates from the assumption of isotropic surface reflection. To interpret the across-track bias with the DAK radiative transfer model, we implement the Bidirectional Reflectance Distribution Function (BRDF) from the Ross-Li semi-empirical model. Testing our implementation against state-of-art RTMs LIDORT and SCIATRAN, we find that simulated TOA reflectance generally agrees to within 1 %. By replacing the assumption of isotropic surface reflection in the cloud retrievals over vegetated scenes with scattering kernels and corresponding BRDF parameters from a daily, high-resolution database derived from 16 years' worth of MODIS measurements, the East-West bias in the retrieved cloud fractions largely vanishes. We conclude that across-track biases in cloud fractions can be explained by cloud algorithms not adequately accounting for the effects of surface reflectance anisotropy. The implications for NO2 air mass factor (AMF) calculations are substantial. Under moderately polluted NO2 and backscatter conditions, clear-sky AMFs are up to 20 % higher and cloud radiance fractions up to 40 % lower if surface anisotropic reflection is accounted for. The combined effect of these changes is that NO2 total AMFs increase by up to 30 % for backscatter geometries (and decrease by up to 35 % for forward scattering geometries), stronger than the effect of either contribution alone. In an unpolluted troposphere, surface BRDF effects on cloud fraction counteract (and largely cancel) the effect on the clear-sky AMF. Our results emphasize that surface reflectance anisotropy needs to be taken into account in a coherent manner for more realistic and accurate retrievals of clouds and NO2 from UV/Vis satellite sensors. These improvements will be beneficial for current sensors, in particular for the recently launched TROPOMI instrument with a high spatial resolution.


2018 ◽  
Vol 11 (7) ◽  
pp. 4509-4529 ◽  
Author(s):  
Alba Lorente ◽  
K. Folkert Boersma ◽  
Piet Stammes ◽  
L. Gijsbert Tilstra ◽  
Andreas Richter ◽  
...  

Abstract. The angular distribution of the light reflected by the Earth's surface influences top-of-atmosphere (TOA) reflectance values. This surface reflectance anisotropy has implications for UV/Vis satellite retrievals of albedo, clouds, and trace gases such as nitrogen dioxide (NO2). These retrievals routinely assume the surface to reflect light isotropically. Here we show that cloud fractions retrieved from GOME-2A and OMI with the FRESCO and OMCLDO2 algorithms have an east–west bias of 10 % to 50 %, which are highest over vegetation and forested areas, and that this bias originates from the assumption of isotropic surface reflection. To interpret the across-track bias with the DAK radiative transfer model, we implement the bidirectional reflectance distribution function (BRDF) from the Ross–Li semi-empirical model. Testing our implementation against state-of-the-art RTMs LIDORT and SCIATRAN, we find that simulated TOA reflectance generally agrees to within 1 %. We replace the assumption of isotropic surface reflection in the equations used to retrieve cloud fractions over forested scenes with scattering kernels and corresponding BRDF parameters from a daily high-resolution database derived from 16 years' worth of MODIS measurements. By doing this, the east–west bias in the simulated cloud fractions largely vanishes. We conclude that across-track biases in cloud fractions can be explained by cloud algorithms that do not adequately account for the effects of surface reflectance anisotropy. The implications for NO2 air mass factor (AMF) calculations are substantial. Under moderately polluted NO2 and backward-scattering conditions, clear-sky AMFs are up to 20 % higher and cloud radiance fractions up to 40 % lower if surface anisotropic reflection is accounted for. The combined effect of these changes is that NO2 total AMFs increase by up to 30 % for backward-scattering geometries (and decrease by up to 35 % for forward-scattering geometries), which is stronger than the effect of either contribution alone. In an unpolluted troposphere, surface BRDF effects on cloud fraction counteract (and largely cancel) the effect on the clear-sky AMF. Our results emphasise that surface reflectance anisotropy needs to be taken into account in a coherent manner for more realistic and accurate retrievals of clouds and NO2 from UV/Vis satellite sensors. These improvements will be beneficial for current sensors, in particular for the recently launched TROPOMI instrument with a high spatial resolution.


Author(s):  
M. R. Pandya ◽  
V. N. Pathak ◽  
D. B. Shah ◽  
R.. P Singh

The Indian Remote Sensing (IRS) satellite series has been providing data since 1988 through various Earth observation missions. Before using IRS data for the quantitative analysis and parameter retrieval, it must be corrected for the atmospheric effects because spectral bands of IRS sensors are contaminated by intervening atmosphere. Standard atmospheric correction model tuned for the IRS sensors was not available for deriving surface reflectance. Looking at this gap area, a study was carried out to develop a physicsbased method, called SACRS2- a Scheme for Atmospheric Correction of Resourcesat-2 (RS2) AWiFS data. SACRS2 is a computationally fast scheme developed for correcting large amount of data acquired by RS2-AWiFS sensor using a detailed radiative transfer model 6SV. The method is based on deriving a set of coefficients which depend on spectral bands of the RS2-AWiFS sensor through thousands of forward signal simulations by 6SV. Once precise coefficients of all the physical processes of atmospheric correction are determined for RS2-AWiFS spectral bands then a complete scheme was developed using these coefficients. Major inputs of the SACRS2 scheme are raw digital numbers recorded by RS2-AWiFS sensor, aerosol optical thickness at 550 nm, columnar water vapour content, ozone content and viewing-geometry. Results showed a good performance of SACRS2 with a maximum relative error in the SACRS2 simulations ranged between approximately 2 to 7 percent with respect to reference 6SV computations. A complete software package containing the SACRS2 model along with user guide and test dataset has been released on the website (www.mosdac.gov.in) for the researchers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qinghong Zeng ◽  
Shengbo Chen ◽  
Yuanzhi Zhang ◽  
Yongling Mu ◽  
Rui Dai ◽  
...  

AbstractWe report on the mineralogical and chemical properties of materials investigated by the lunar rover Yutu-2, which landed on the Von Kármán crater in the pre-Nectarian South Pole–Aitken (SPA) basin. Yutu-2 carried several scientific payloads, including the Visible and Near-infrared Imaging Spectrometer (VNIS), which is used for mineral identification, offering insights into lunar evolution. We used 86 valid VNIS data for 21 lunar days, with mineral abundance obtained using the Hapke radiative transfer model and sparse unmixing algorithm and chemical compositions empirically estimated. The mineralogical properties of the materials at the Chang’E-4 (CE-4) site referred to as norite/gabbro, based on findings of mineral abundance, indicate that they may be SPA impact melt components excavated by a surrounding impact crater. We find that CE-4 materials are dominated by plagioclase and pyroxene and feature little olivine, with 50 of 86 observations showing higher LCP than HCP in pyroxene. In view of the effects of space weathering, olivine content may be underestimated, with FeO and TiO2 content estimated using the maturity-corrected method. Estimates of chemical content are 7.42–18.82 wt% FeO and 1.48–2.1 wt% TiO2, with a low-medium Mg number (Mg # ~ 55). Olivine-rich materials are not present at the CE-4 landing site, based on the low-medium Mg #. Multi-origin materials at the CE-4 landing site were analyzed with regard to concentrations of FeO and TiO2 content, supporting our conclusion that the materials at CE-4 do not have a single source but rather are likely a mixture of SPA impact melt components excavated by surrounding impact crater and volcanic product ejecta.


2021 ◽  
Author(s):  
Marta Luffarelli ◽  
Yves Govaerts

<p>The CISAR (Combined Inversion of Surface and AeRosols) algorithm is exploited in the framework of the ESA Aerosol Climate Change Initiatiave (CCI) project, aiming at providing a set of atmospheric (cloud and aerosol) and surface reflectance products derived from S3A/SLSTR observations using the same radiative transfer physics and assumptions. CISAR is an advance algorithm developed by Rayference originally designed for the retrieval of aerosol single scattering properties and surface reflectance from both geostationary and polar orbiting satellite observations.  It is based on the inversion of a fast radiative transfer model (FASTRE). The retrieval mechanism allows a continuous variation of the aerosol and cloud single scattering properties in the solution space.</p><p> </p><p>Traditionally, different approaches are exploited to retrieve the different Earth system components, which could lead to inconsistent data sets. The simultaneous retrieval of different atmospheric and surface variables over any type of surface (including bright surfaces and water bodies) with the same forward model and inversion scheme ensures the consistency among the retrieved Earth system components. Additionally, pixels located in the transition zone between pure clouds and pure aerosols are often discarded from both cloud and aerosol algorithms. This “twilight zone” can cover up to 30% of the globe. A consistent retrieval of both cloud and aerosol single scattering properties with the same algorithm could help filling this gap.</p><p> </p><p>The CISAR algorithm aims at overcoming the need of an external cloud mask, discriminating internally between aerosol and cloud properties. This approach helps reducing the overestimation of aerosol optical thickness in cloud contaminated pixels. The surface reflectance product is delivered both for cloud-free and cloudy observations.  </p><p> </p><p>Global maps obtained from the processing of S3A/SLSTR observations will be shown. The SLSTR/CISAR products over events such as, for instance, the Australian fire in the last months of 2019, will be discussed in terms of aerosol optical thickness, aerosol-cloud discrimination and fine/coarse mode fraction.</p>


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
J. Laliberté ◽  
S. Bélanger ◽  
M. Babin

The Arctic atmosphere–surface system transmits visible light from the Sun to the ocean, determining the annual cycle of light available to microalgae. This light is referred to as photosynthetically available radiation (PAR). A known consequence of Arctic warming is the change at the atmosphere–ocean interface (longer ice-free season, younger ice), implying an increase in the percentage of PAR being transferred to the water. However, much less is known about the recent changes in how much PAR is being transferred by the overlaying atmosphere. We studied the transfer of PAR through the atmosphere between May 21 and July 23 at a pan-Arctic scale for the period ranging from 2000 to 2016. By combining a large data set of atmospheric and surface conditions into a radiative transfer model, we computed the percentage of PAR transferred to the surface. We found that typical Arctic atmospheres convey between 60% and 70% of the incident PAR received from the Sun, meaning the Arctic atmosphere typically transmits more light than most sea ice surfaces, with the exception of mature melt ponds. We also found that the transfer of PAR through the atmosphere decreased at a rate of 2.3% per decade over the studied period, due to the increase in cloudiness and the weaker radiative interaction between the atmosphere and the surface. Further investigation is required to address how, in the warmer Arctic climate, this negative trend would compensate for the increased surface transmittance and its consequences on marine productivity.


2016 ◽  
Vol 9 (6) ◽  
pp. 2647-2668 ◽  
Author(s):  
Caroline R. Nowlan ◽  
Xiong Liu ◽  
James W. Leitch ◽  
Kelly Chance ◽  
Gonzalo González Abad ◽  
...  

Abstract. The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m  ×  250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm−2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.


2020 ◽  
Vol 12 (14) ◽  
pp. 2254 ◽  
Author(s):  
Hafiz Ali Imran ◽  
Damiano Gianelle ◽  
Duccio Rocchini ◽  
Michele Dalponte ◽  
M. Pilar Martín ◽  
...  

Red-edge (RE) spectral vegetation indices (SVIs)—combining bands on the sharp change region between near infrared (NIR) and visible (VIS) bands—alongside with SVIs solely based on NIR-shoulder bands (wavelengths 750–900 nm) have been shown to perform well in estimating leaf area index (LAI) from proximal and remote sensors. In this work, we used RE and NIR-shoulder SVIs to assess the full potential of bands provided by Sentinel-2 (S-2) and Sentinel-3 (S-3) sensors at both temporal and spatial scales for grassland LAI estimations. Ground temporal and spatial observations of hyperspectral reflectance and LAI were carried out at two grassland sites (Monte Bondone, Italy, and Neustift, Austria). A strong correlation (R2 > 0.8) was observed between grassland LAI and both RE and NIR-shoulder SVIs on a temporal basis, but not on a spatial basis. Using the PROSAIL Radiative Transfer Model (RTM), we demonstrated that grassland structural heterogeneity strongly affects the ability to retrieve LAI, with high uncertainties due to structural and biochemical PTs co-variation. The RENDVI783.740 SVI was the least affected by traits co-variation, and more studies are needed to confirm its potential for heterogeneous grasslands LAI monitoring using S-2, S-3, or Gaofen-5 (GF-5) and PRISMA bands.


2007 ◽  
Vol 46 ◽  
pp. 375-381 ◽  
Author(s):  
Teruo Aoki ◽  
Hiroki Motoyoshi ◽  
Yuji Kodama ◽  
Teppei J. Yasunari ◽  
Konosuke Sugiura

AbstractContinuous measurements of the radiation budget and meteorological components, along with frequent snow-pit work, were performed in Sapporo, Hokkaido, Japan, during two winters from 2003 to 2005. The measured relationships between broadband albedos and the mass concentration of snow impurities were compared with theoretically predicted relationships calculated using a radiative transfer model for the atmosphere–snow system in which different types (in light absorption) of impurity models based on mineral dust and soot were assumed. The result suggests that the snow in Sapporo was contaminated not only with mineral dust but also with more absorptive soot. A comparison of the measured relationships between broadband albedos and snow grain size for two different layers with the theoretically predicted relationships revealed that the visible albedo contains information about the snow grain size in deeper snow layers (10 cm), and the near-infrared albedo contains only surface information. This is due to the difference in penetration depth of solar radiation into snow between the visible and the near-infrared wavelengths.


2020 ◽  
Author(s):  
Marco Celesti ◽  
Khelvi Biriukova ◽  
Petya K. E. Campbell ◽  
Ilaria Cesana ◽  
Sergio Cogliati ◽  
...  

<p>Remote sensing of solar-induced chlorophyll fluorescence (SIF) is of growing interest for the scientific community due to the inherent link of SIF with vegetation photosynthetic activity. An increasing number of in situ and airborne fluorescence spectrometers has been deployed worldwide to advance the understanding and usage of SIF for ecosystem studies. Particularly, a number of sites has been instrumented with the FloX (J&B Hyperspectral Devices, Germany), an automated instrument that houses two high resolution spectrometers covering the visible and near infrared spectral regions, one specifically optimized for fluorescence retrieval, the other for plant trait estimation.</p><p>In this contribution we explore the feasibility to consistently retrieve plant traits and SIF from canopy level FloX measurements through the numerical inversion of a light version of the SCOPE model. The optimization approach was specifically adapted to work with the high- frequency time series produced by the FloX. In this context, a strategy for optimal retrieval of plant traits at daily scale is discussed, together with the implementation of an emulator of the radiative transfer model in the retrieval scheme. The retrieval strategy was applied to site measurements across Europe and the US that span a variety of natural and agricultural ecosystems.</p><p>The full spectrum of canopy SIF, the fluorescence quantum efficiency, and main plant traits controlling light absorption and reabsorption were retrieved concurrently and evaluated over the growing season in comparison with site-specific ancillary data. Improvements and challenges of this method compared to other retrievals are discussed, together with the potential of applying a similar retrieval scheme to airborne datasets acquired with e.g. the HyPlant sensor, or the reconfigured “FLEX mode” data acquired with the recently launched Sentinel-3B during its commissioning phase.</p>


Sign in / Sign up

Export Citation Format

Share Document