scholarly journals Analyzing the Atmospheric Boundary Layer by high-order moments obtained from multiwavelength lidar data: impact of wavelength choice

2019 ◽  
Author(s):  
Gregori de Arruda Moreira ◽  
Fábio Juliano da Silva Lopes ◽  
Juan Luis Guerrero-Rascado ◽  
Jonatan João da Silva ◽  
Antonio Arleques Gomes ◽  
...  

Abstract. The lowest region of the troposphere is a turbulent layer denominated Atmospheric Boundary Layer (ABL) characterized by high daily variability due to the influence of surface forcings. This is the reason why detecting systems with high spatial and temporal resolution, like lidars, have been widely applied for researching this region. In this paper, we present a comparative analysis on the use of lidar backscattered signals at three wavelengths (355, 532 and 1064 nm) to study the ABL investigating the high-order moments, which give us information about the ABL height (derived by the variance method), aerosol layers movements (skewness) and mixing conditions (kurtosis) at several heights. Previous studies have shown that 1064-nm wavelength, due to the predominance of particle signature in the total backscattered atmospheric signal, provides an appropriate description of the turbulence field and thus, in this study, it was considered as a reference. We analyze two case studies, which show us that the backscattered signal at 355 nm, even after applying some corrections, has a limited applicability for turbulence studies using the proposed methodology due to the strong contribution of the molecular signature to the total backscatter signal. This increases the noise associated to the profiles and, consequently, generates misinformation. On the other hand, the information on the turbulence field derived from the backscattered signal at 532 nm is similar to that obtained at 1064 nm due to the appropriate attenuation of the noise, generated by molecular component of backscattered signal, by the application of the corrections proposed.

2019 ◽  
Vol 12 (8) ◽  
pp. 4261-4276 ◽  
Author(s):  
Gregori de Arruda Moreira ◽  
Fábio Juliano da Silva Lopes ◽  
Juan Luis Guerrero-Rascado ◽  
Jonatan João da Silva ◽  
Antonio Arleques Gomes ◽  
...  

Abstract. The lowest region of the troposphere is a turbulent layer known as the atmospheric boundary layer (ABL) and characterized by high daily variability due to the influence of surface forcings. This is the reason why detecting systems with high spatial and temporal resolution, such as lidar, have been widely applied for researching this region. In this paper, we present a comparative analysis on the use of lidar-backscattered signals at three wavelengths (355, 532 and 1064 nm) to study the ABL by investigating the high-order moments, which give us information about the ABL height (derived by the variance method), aerosol layer movement (skewness) and mixing conditions (kurtosis) at several heights. Previous studies have shown that the 1064 nm wavelength, due to the predominance of particle signature in the total backscattered atmospheric signal and practically null presence of molecular signal (which can represent noise in high-order moments), provides an appropriate description of the turbulence field, and thus in this study it was considered a reference. We analyze two case studies that show us that the backscattered signal at 355 nm, even after applying some corrections, has a limited applicability for turbulence studies using the proposed methodology due to the strong contribution of the molecular signature to the total backscatter signal. This increases the noise associated with the high-order profiles and, consequently, generates misinformation. On the other hand, the information on the turbulence field derived from the backscattered signal at 532 nm is similar to that obtained at 1064 nm due to the appropriate attenuation of the noise, generated by molecular component of backscattered signal by the application of the corrections proposed.


2015 ◽  
Vol 15 (5) ◽  
pp. 2867-2881 ◽  
Author(s):  
E. Hammann ◽  
A. Behrendt ◽  
F. Le Mounier ◽  
V. Wulfmeyer

Abstract. The temperature measurements of the rotational Raman lidar of the University of Hohenheim (UHOH RRL) during the High Definition of Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observation Prototype Experiment (HOPE) in April and May 2013 are discussed. The lidar consists of a frequency-tripled Nd:YAG laser at 355 nm with 10 W average power at 50 Hz, a two-mirror scanner, a 40 cm receiving telescope, and a highly efficient polychromator with cascading interference filters for separating four signals: the elastic backscatter signal, two rotational Raman signals with different temperature dependence, and the vibrational Raman signal of water vapor. The main measurement variable of the UHOH RRL is temperature. For the HOPE campaign, the lidar receiver was optimized for high and low background levels, with a novel switch for the passband of the second rotational Raman channel. The instrument delivers atmospheric profiles of water vapor mixing ratio as well as particle backscatter coefficient and particle extinction coefficient as further products. As examples for the measurement performance, measurements of the temperature gradient and water vapor mixing ratio revealing the development of the atmospheric boundary layer within 25 h are presented. As expected from simulations, a reduction of the measurement uncertainty of 70% during nighttime was achieved with the new low-background setting. A two-mirror scanner allows for measurements in different directions. When pointing the scanner to low elevation, measurements close to the ground become possible which are otherwise impossible due to the non-total overlap of laser beam and receiving telescope field of view in the near range. An example of a low-level temperature measurement is presented which resolves the temperature gradient at the top of the stable nighttime boundary layer 100 m above the ground.


2015 ◽  
Vol 2 (6) ◽  
pp. 1531-1551
Author(s):  
P. López ◽  
J. L. Cano

Abstract. The focus of this paper is to analyze the behaviour of the maximum Thorpe displacement (dT)max and the Thorpe scale LT at the atmospheric boundary layer (ABL), extending previous research with new data and improving our studies related to the novel use of the Thorpe method applied to ABL. The maximum Thorpe displacements varies between −900 and 950 m for the different field campaigns. The Thorpe scale LT ranges between 0.2 and 680 m for the different data sets which cover different stratified mixing conditions (turbulence sher-driven and convective regions). We analyze the relation between dT)max and the Thorpe scale LT and we deduce that they verify a power law. We also deduce that there is a difference in exponents of the power laws for convective conditions and shear-driven conditions. This different power laws could identify overturns created under different mechanisms.


2020 ◽  
Vol 237 ◽  
pp. 03001
Author(s):  
Masanori Yabuki ◽  
Yuya Kawano ◽  
Yusaku Tottori ◽  
Makoto Tsukamoto ◽  
Eiji Takeuchi ◽  
...  

A Raman lidar with a deep ultraviolet laser was constructed to continuously monitor water vapor distributions in the atmospheric boundary layer for twenty-four hours. We employ a laser at a wavelength of 266 nm and detects the light separated into an elastic backscatter signal and vibrational Raman signals of oxygen, nitrogen, and water vapor. The lidar was encased in a temperature-controlled and vibration-isolated compact container, resistant to a variety of environmental conditions. Water vapor profile observations were made for twelve months from November 24, 2017, to November 29, 2018. These observations were compared with collocated radiosonde measurements for daytime and nighttime conditions.


2019 ◽  
Vol 19 (20) ◽  
pp. 13097-13128 ◽  
Author(s):  
Dongxiang Wang ◽  
Dominika Szczepanik ◽  
Iwona S. Stachlewska

Abstract. PollyXT Raman polarization lidar observations were performed at the Remote Sensing Laboratory (RS-Lab) in Warsaw (52.2109∘ N, 20.9826∘ E), Poland, in the framework of the European Aerosol Research Lidar Network (EARLINET) and the Aerosol, Clouds, and Trace gases Research Infrastructure (ACTRIS) projects. Data collected in July, August, and September of 2013, 2015, and 2016 were analysed using the classical Raman approach. In total, 246 sets of intact profiles, each set comprising particle extinction (α) and backscatter coefficients (β) as well as linear particle depolarization ratios (δ) at 355 nm and 532 nm, were derived for statistical investigations and stored in the EARLINET/ACTRIS database. The main analysis was focused on intensive optical properties obtained within the atmospheric boundary layer (ABL). Their interrelations were discussed for different periods: the entire day; nighttime, with respect to the nocturnal boundary layer (NL) and the residual boundary layer (RL); at sunrise, with respect to the morning transition boundary layer (MTL); and from late afternoon until sunset, with respect to the well-mixed boundary layer (WML). Within the boundary layer, the lidar-derived optical properties (entire day, 246 sets) revealed a mean aerosol optical depth (AODABL) of 0.20±0.10 at 355 nm and 0.11±0.06 at 532 nm; a mean Ångström exponent (ÅEABL) of 1.54±0.37; a mean lidar ratio (LRABL) of 48±17 sr at 355 nm and 41±15 sr at 532 nm; a mean linear particle depolarization ratio (δABL) of 0.02±0.01 at 355 nm and 0.05±0.01 at 532 nm; and a mean water vapour mixing ratio (WVABL) of 8.28±2.46 g kg−1. In addition, the lidar-derived daytime boundary layer optical properties (for the MTL and WML) were compared with the corresponding daytime columnar aerosol properties derived from the multi-filter rotating shadowband radiometer (MFR-7) measuring within the National Aerosol Research Network (PolandAOD-NET) and the CE318 sun photometer of the Aerosol Robotic NETwork (AERONET). A high linear correlation of the columnar aerosol optical depth values from the two latter instruments was obtained in Warsaw (a correlation coefficient of 0.98 with a standard deviation of 0.02). The contribution of the aerosol load in the summer and early-autumn free troposphere can result in an AODCL value that is twice as high as the AODABL over Warsaw. The occurrence of a turbulence-driven aerosol burst from the boundary layer into the free troposphere can further increase this difference. Aerosol within the ABL and in the free troposphere was interpreted based on comparisons of the properties derived at different altitudes with values reported in the literature, which were characteristic for different aerosol types, in combination with backward trajectory calculations, satellite data, and model outputs. Within the boundary layer, the aerosol consisted of either urban anthropogenic pollution (∼ 61 %) or mixtures of anthropogenic aerosol with biomass-burning aerosol (< 14 %), local pollen (< 7 %), or Arctic marine particles (< 5 %). No significant contribution of mineral dust was found in the boundary layer. The lidar-derived atmospheric boundary layer height (ABLH) and the AODABL exhibited a positive correlation (R of 0.76), associated with the local anthropogenic pollution (most pronounced for the RL and WML). A positive correlation of the AODABL and LRABL and a negative correlation of the ÅEABL and LRABL, as well as the expected negative trends for the WVABL (and surface relative humidity, RH) and δABL, were observed. Relations of the lidar-derived aerosol properties within the ABL and the surface in situ measurements of particulate matter with an aerodynamic diameter less than 10 µm (PM10) and less than 2.5 µm (PM2.5) measured by the Warsaw Regional Inspectorate for Environmental Protection (WIOS) network, and the fine-to-coarse mass ratio (FCMR) were investigated. The FCMR and surface RH showed a positive correlation even at nighttime (R of 0.71 for the MTL, 0.63 for the WML, and 0.6 for the NL), which generally lacked statistically significant relations. A weak negative correlation of the FCMR and δABL (more pronounced at 532 nm at nighttime) and no casual relation between the FCMR and ÅEABL were found. Most interestingly, distinct differences were observed for the morning transition layer (MTL) and the well-mixed layer (WML). The MTL ranged up to 0.6–1 km, and was characterized by a lower AODABL(<0.12), wetter conditions (RH 50–80 %), smaller particles (ÅEABL of 1–2.2; FCMR from 0.5 to 3), and a low LRABL of between 20 and 40 sr. The WML ranged up to 1–2.5 km and exhibited a higher AODABL (reaching up to 0.45), drier conditions (RH 25–60  %), larger particles (ÅEABL of 0.8–1.7; FCMR of 0.2–1.5), and a higher LRABL of up to 90 sr.


2017 ◽  
Author(s):  
Fabien Margairaz ◽  
Marco G. Giometto ◽  
Marc B. Parlange ◽  
Marc Calaf

Abstract. Three dealiasing schemes for large-eddy simulation of turbulent flows are inter-compared for the canonical case of pressure-drive atmospheric boundary-layer type flows. Aliasing errors arise in the multiplication of partial sums, such as those encountered when integrating the non-linear terms of the Navier–Stokes equations in spectral methods (Fourier or polynomial discrete series), and are detrimental to the accuracy of the numerical solution. This is of special relevance when using high-order schemes. In this work, a performance/cost analysis is developed for three well-accepted approaches: the exact 3/2 rule, the Fourier truncation method, and a high order Fourier smoothing method. Tests are performed within a newly developed mixed pseudo-spectral collocation - finite differences large-eddy simulation code, parallelized using a two-dimensional pencil decomposition. The static Smagorinsky eddy-viscosity model with wall damping of the model coefficient is used. A series of simulations are performed at varying resolution and key flow statistics are inter-compared among the considered dealiasing schemes. The numerical results validate the numerical performance predicted by theory when using the Fourier truncation and Fourier smoothing methods. In terms of turbulence statistics, the Fourier Truncation method proves to be over-dissipative when compared against the Fourier Smoothing method and the traditional 3/2-rule, leading to an enhanced horizontal integrated mass flux and to higher dispersive momentum fluxes. Its use in large-eddy simulation of atmospheric boundary-layer type flows is therefore not recommended. Conversely, the Fourier Smoothing method yields accurate flow statistics, comparable to those resulting from the application of the 3/2 rule, with a significant reduction in computational cost, which makes it a convenient alternative for use in the studies related to the atmospheric boundary layer.


2020 ◽  
Author(s):  
Thomas Rieutord ◽  
Sylvain Aubert ◽  
Tiago Machado

Abstract. Atmospheric boundary layer height (BLH) is a key parameter for several meteorological applications, for example air quality forecast. To measure it, a common practice is to use aerosol lidars: a strong decrease in the backscatter signal indicates the top of the boundary layer. This paper describes and compares two methods of machine learning to derive the BLH from backscatter profiles: the K-means algorithm and the AdaBoost algorithm. Their codes are available under a fully open access, with the name KABL (K-means for Atmospheric Boundary Layer) and ADABL (AdaBoost for Atmospheric Boundary Layer). Both methods are compared to the lidar manufacturer's software and to reference BLH derived from collocated radiosondes. The radiosondes are taken as the reference for all other methods. The comparison is carried out on a two-year long period (2017–2018) on 2 Meteo-France's operational network sites (Trappes and Brest). Results show that, although its training is limited, ADABL is performing better than KABL and can easily be improved by enhancing its training set. However, KABL can be easily adapted for other instrumental device and used to make instrument synergy, while ADABL must be fully re-trained at each change in the instrument settings.


Atmosphere ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 28 ◽  
Author(s):  
Igor Petenko ◽  
Giampietro Casasanta ◽  
Simone Bucci ◽  
Margarita Kallistratova ◽  
Roberto Sozzi ◽  
...  

The characteristics of the vertical and temporal structure of the coastal atmospheric boundary layer are variable for different sites and are often not well known. Continuous monitoring of the atmospheric boundary layer was carried out close to the Tyrrhenian Sea, near Tarquinia (Italy), in 2015–2017. A ground-based remote sensing instrument (triaxial Doppler sodar) and in situ sensors (meteorological station, ultrasonic anemometer/thermometer, and net radiometer) were used to measure vertical wind velocity profiles, the thermal structure of the atmosphere, the height of the turbulent layer, turbulent heat and momentum fluxes in the surface layer, atmospheric radiation, and precipitation. Diurnal alternation of the atmospheric stability types governed by the solar cycle coupled with local sea/land breeze circulation processes is found to be variable and is classified into several main regimes. Low-level jets (LLJ) at heights of 100–300 m above the surface with maximum wind speed in the range of 5–18 m s−1 occur in land breezes, both during the night and early in the morning. Empirical relationships between the LLJ core wind speed characteristics and those near the surface are obtained. Two separated turbulent sub-layers, both below and above the LLJ core, are often observed, with the upper layer extending up to 400–600 m. Kelvin–Helmholtz billows associated with internal gravity–shear waves occurring in these layers present opposite slopes, in correspondence with the sign of vertical wind speed gradients. Our observational results provide a basis for the further development of theoretical and modelling approaches, taking into account the wave processes occurring in the atmospheric boundary layer at the land–sea interface.


Sign in / Sign up

Export Citation Format

Share Document