scholarly journals Effective density of Aquadag and fullerene soot black carbon reference materials used for SP2 calibration

2011 ◽  
Vol 4 (12) ◽  
pp. 2851-2858 ◽  
Author(s):  
M. Gysel ◽  
M. Laborde ◽  
J. S. Olfert ◽  
R. Subramanian ◽  
A. J. Gröhn

Abstract. The mass and effective density of black carbon (BC) particles generated from aqueous suspensions of Aquadag and fullerene soot was measured and parametrized as a function of their mobility diameter. The measurements were made by two independent research groups by operating a differential mobility analyser (DMA) in series with an aerosol particle mass analyser (APM) or a Couette centrifugal particle mass analyser (CPMA). Consistent and reproducible results were found in this study for different production lots of Aquadag, indicating that the effective density of these particles is a stable quantity and largely unaffected by differences in aerosol generation procedures and suspension treatments. The effective density of fullerene soot particles from one production lot was also found to be stable and independent of suspension treatments. Some differences to previous literature data were observed for both Aquadag and fullerene soot at larger particle diameters. Knowledge of the exact relationship between mobility diameter and particle mass is of great importance, as DMAs are commonly used to size-select particles from BC reference materials for calibration of single particle soot photometers (SP2), which quantitatively detect the BC mass in single particles.

2011 ◽  
Vol 4 (4) ◽  
pp. 4937-4955 ◽  
Author(s):  
M. Gysel ◽  
M. Laborde ◽  
J. S. Olfert ◽  
R. Subramanian ◽  
A. J. Gröhn

Abstract. The mass and effective density of black carbon (BC) particles generated from aqueous suspensions of Aquadag and fullerene soot was measured and parametrized as a function of their mobility diameter. The measurements were made by two independent research groups by operating a differential mobility analyser (DMA) in series with an aerosol particle mass analyser (APM) or a Couette centrifugal particle mass analyser (CPMA). Consistent and reproducible results were found in this study for different production lots of Aquadag, indicating that the effective density of these particles is a stable quantity and largely unaffected by differences in aerosol generation procedures and suspension treatments. The effective density of fullerene soot particles from one production lot was also found to be stable and independent of suspension treatments. Some difference to previous literature data was observed for both Aquadag and fullerene soot at larger particle diameters. Knowledge of the exact relationship between mobility diameter and particle mass is of great importance, as DMAs are commonly used to size-select particles from BC reference materials for calibration of single particle soot photometers (SP2), which quantitatively detect the BC mass in single particles.


2018 ◽  
Author(s):  
Yunfei Wu ◽  
Yunjie Xia ◽  
Rujin Huang ◽  
Zhaoze Deng ◽  
Ping Tian ◽  
...  

Abstract. The morphology of externally mixed black carbon (extBC) aerosols, an important factor affecting radiative forcing, was studied by a tandem method coupling a differential mobility diameter (DMA) with a single-particle soot photometer (SP2). Ambient particles were selected by the DMA, and the size-resolved extBC particles were distinguished from those of a thick coating (internally mixed) and quantified by the SP2. Time differences between the DMA size selection and the SP2 measurement were processed previously, as well as the effects of multicharged particles. Based on the mass-mobility relationship, the fractal dimension of the extBC particles was obtained, with a value of 2.36 ± 0.04. This value is comparable with those of diesel exhaust particles, implying a predominant contribution of vehicle emissions to the ambient extBC in urban Beijing. The effective densities (ρeff) of the extBC in the mobility diameter range of 140–750 nm were also derived, with values gradually decreasing from 0.34 g cm−3 at 140–160 nm to 0.12 g cm−3 at 700 nm. The ρeff values were generally lower than those measured using the DMA-aerosol particle mass analyzer (APM) system. This was most likely due to the lower BC masses determined by the SP2 compared to those from the APM, since the SP2 measured the mass of pure refractory BC instead of the entire BC aggregate consisting of both refractory BC and nonrefractory components measured by the APM.


2012 ◽  
Vol 5 (5) ◽  
pp. 1031-1043 ◽  
Author(s):  
M. Laborde ◽  
P. Mertes ◽  
P. Zieger ◽  
J. Dommen ◽  
U. Baltensperger ◽  
...  

Abstract. Black carbon (BC) is now mainly of anthropogenic origin. It is the dominant light absorbing component of atmospheric aerosols, playing an important role in the earth's radiative balance and therefore relevant to climate change studies. In addition, BC is known to be harmful to human beings making it relevant to policy makers. Nevertheless, the measurement of BC remains biased by the instrument-based definition of BC. The Single Particle Soot Photometer (SP2), allows the measurement of the refractory BC (rBC) mass of individual particles using laser-induced incandescence. However, the SP2 needs an empirical calibration to retrieve the rBC mass from the incandescence signal and the sensitivity of the SP2 differs between different BC types. Ideally, for atmospheric studies, the SP2 should be calibrated using ambient particles containing a known mass of ambient rBC. However, such "ambient BC" calibration particles cannot easily be obtained and thus commercially available BC particles are commonly used for SP2 calibration instead. In this study we tested the sensitivity of the SP2 to different BC types in order to characterize the potential error introduced by using non-ambient BC for calibration. The sensitivity of the SP2 was determined, using an aerosol particle mass analyzer, for rBC from thermodenuded diesel exhaust, wood burning exhaust and ambient particles as well as for commercially available products: Aquadag® and fullerene soot. Thermodenuded, fresh diesel exhaust has been found to be ideal for SP2 calibration for two reasons. First, the small amount of non-BC matter upon emission reduces the risk of bias due to incomplete removal of non-BC matter and second, it is considered to represent atmospheric rBC in urban locations where diesel exhaust is the main source of BC. The SP2 was found to be up to 16% less sensitive to rBC from thermodenuded ambient particles (≤15 fg) than rBC from diesel exhaust, however, at least part of this difference can be explained by incomplete removal of non-refractory components in the thermodenuder. The amount of remaining non-refractory matter was estimated to be below 30% by mass, according to a comparison of the scattering cross sections of the whole particles with that of the pure BC cores. The SP2 sensitivity to rBC from wood burning exhaust agrees with the SP2 sensitivity to rBC from diesel exhaust within an error of less than 14% (≤40 fg). If, due to experimental restrictions, diesel exhaust cannot be used, untreated fullerene soot was found to give an SP2 calibration curve similar to diesel exhaust and ambient rBC (within ±10% for a rBC mass ≤15 fg) and is therefore recommended although two different batches differed by ~14% between themselves. In addition, the SP2 was found to be up to 40% more sensitive to Aquadag® than to diesel exhaust rBC. Therefore Aquadag® cannot be recommended for atmospheric application without accounting for the sensitivity difference. These findings for fullerene soot and Aquadag® confirm results from previous literature.


2018 ◽  
Vol 4 (4) ◽  
pp. 240-246
Author(s):  
Penelope Baltzopoulou ◽  
Margaritis Kostoglou ◽  
Eleni Papaioannou ◽  
Athanasios G. Konstandopoulos

2013 ◽  
Vol 13 (10) ◽  
pp. 26981-27018
Author(s):  
L. Poulain ◽  
W. Birmili ◽  
F. Canonaco ◽  
M. Crippa ◽  
Z. J. Wu ◽  
...  

Abstract. In the fine particle mode (aerodynamic diameter <1 μm) refractory material has been associated with black carbon (BC) and low-volatile organics and, to a lesser extent, with sea salt and mineral dust. This work analyses refractory particles at the tropospheric research station Melpitz (Germany), combining experimental methods such as a mobility particle size spectrometer (3–800 nm), a thermodenuder operating at 300 °C, a multi-angle absorption photometer (MAAP), and an aerosol mass spectrometer (AMS). The data were collected during two atmospheric field experiments in May/June 2008 as well as February/March 2009. As a basic result, we detected average refractory particle volume fractions of 11±3% (2008) and 17±8% (2009). In both periods, BC was in close linear correlation with the refractory fraction, but not sufficient to quantitatively explain the refractory particle mass concentration. Based on the assumption that BC is not altered by the heating process, the refractory particle mass fraction could be explained by the sum of black carbon BC (47% in summer, 59% in winter) and a refractory organic contribution estimated as part of the Low-Volatility Oxygenated Organic Aerosol (LV-OOA) (53% in summer, 41% in winter); the latter was identified from AMS data by factor analysis. Our results suggest that organics were more volatile in summer (May–June 2008) than in winter (February/March 2009). Although carbonaceous compounds dominated the sub-μm refractory particle mass fraction most of the time, a cross-sensitivity to partially volatile aerosol particles of maritime origin could be seen. These marine particles could be distinguished, however, from the carbonaceous particles by a characteristic particle volume size distribution. The paper discusses the uncertainty of the volatility measurements and outlines the possible merits of volatility analysis as part of continuous atmospheric aerosol measurements.


2019 ◽  
Vol 15 (3) ◽  
pp. 15-22
Author(s):  
A. M. Nepomiluev ◽  
V. V. Kazantsev ◽  
A. P. Shipitsyn

This paper is aimed at analysing the current state and prospects of metrological support and standardisation in the field of thermal analysis in Russia. Main characteristics of reference materials used for testing, graduating, calibrating, and verifying thermal analysis instruments are described.


2019 ◽  
Vol 19 (20) ◽  
pp. 13189-13208
Author(s):  
Xiaoli Shen ◽  
Heike Vogel ◽  
Bernhard Vogel ◽  
Wei Huang ◽  
Claudia Mohr ◽  
...  

Abstract. We conducted a 6-week measurement campaign in summer 2016 at a rural site about 11 km north of the city of Karlsruhe in southwest Germany in order to study the chemical composition and origin of aerosols in the upper Rhine valley. In particular, we deployed a single-particle mass spectrometer (LAAPTOF) and an aerosol mass spectrometer (AMS) to provide complementary chemical information on aerosol particles smaller than 2.5 µm. For the entire measurement period, the total aerosol particle mass was dominated by sodium salts, contributing on average (36±27) % to the total single particles measured by the LAAPTOF. The total particulate organic compounds, sulfate, nitrate, and ammonium contributed on average (58±12) %, (22±7) %, (10±1) %, and (9±3) % to the total non-refractory particle mass measured by the AMS. Positive matrix factorization (PMF) analysis for the AMS data suggests that the total organic aerosol (OA) consisted of five components, including (9±7) % hydrocarbon-like OA (HOA), (16±11) % semi-volatile oxygenated OA (SV-OOA), and (75±15) % low-volatility oxygenated OA (LV-OOA). The regional transport model COSMO-ART was applied for source apportionment and to achieve a better understanding of the impact of complex transport patterns on the field observations. Combining field observations and model simulations, we attributed high particle numbers and SO2 concentrations observed at this rural site to industrial emissions from power plants and a refinery in Karlsruhe. In addition, two characteristic episodes with aerosol particle mass dominated by sodium salts particles comprising (70±24) % of the total single particles and organic compounds accounting for (77±6) % of total non-refractory species, respectively, were investigated in detail. For the first episode, we identified relatively fresh and aged sea salt particles originating from the Atlantic Ocean more than 800 km away. These particles showed markers like m∕z 129 C5H7NO3+, indicating the influence of anthropogenic emissions modifying their composition, e.g. from chloride to nitrate salts during the long-range transport. For a 3 d episode including high organic mass concentrations, model simulations show that on average (74±7) % of the particulate organics at this site were of biogenic origin. Detailed model analysis allowed us to find out that three subsequent peaks of high organic mass concentrations originated from different sources, including local emissions from the city and industrial area of Karlsruhe, regional transport from the city of Stuttgart (∼64 km away), and potential local night-time formation and growth. Biogenic (forest) and anthropogenic (urban) emissions were mixed during transport and contributed to the formation of organic particles. In addition, topography, temperature inversion, and stagnant meteorological conditions also played a role in the build-up of higher organic particle mass concentrations. Furthermore, the model was evaluated using field observations and corresponding sensitivity tests. The model results show good agreement with trends and concentrations observed for several trace gases (e.g. O3, NO2, and SO2) and aerosol particle compounds (e.g. ammonium and nitrate). However, the model underestimates the number of particles by an order of magnitude and underestimates the mass of organic particles by a factor of 2.3. The discrepancy was expected for particle number since the model does not include all nucleation processes. The missing organic mass indicates either an underestimated regional background or missing sources and/or mechanisms in the model, like night-time chemistry. This study demonstrates the potential of combining comprehensive field observations with dedicated transport modelling to understand the chemical composition and complex origin of aerosols.


1987 ◽  
Vol 110 (1) ◽  
pp. 147-158 ◽  
Author(s):  
R. H. Filby ◽  
S. Nguyen ◽  
S. Campbell ◽  
A. Bragg ◽  
C. A. Grimm

2019 ◽  
Author(s):  
Hang Liu ◽  
Xiaole Pan ◽  
Dantong Liu ◽  
Xiaoyong Liu ◽  
Xueshun Chen ◽  
...  

Abstract. Black carbon aerosols play an important role in climate change by absorbing solar radiation and degrading visibility. In this study, the mixing state of refractory black carbon (rBC) at an urban site in Beijing was studied with a single particle soot photometer (SP2), as well as a tandem observation system with a centrifugal particle mass analyzer (CPMA) and a differential mobility analyzer (DMA), in early summer of 2018. The results demonstrated that the mass-equivalent size distribution of rBC exhibited an approximately lognormal distribution with a mass median diameter (MMD) of 171.2 nm. When the site experienced prevailing southerly winds, the MMD of rBC increased notably by 19 %. During the observational period, the ratio of the diameter of rBC-containing particles (Dp) to the rBC core (Dc) was 1.20 on average for Dc = 180 nm, indicating that the majority of rBC particles were thinly coated. The Dp / Dc value exhibited a clear diurnal pattern, with a maximum at 1400 LST and an enhancing rate of 0.013/h; higher Ox conditions increased the coating enhancing rate. Bare rBC particles were primarily in a fractal structure with a mass fractal dimension (Dfm) of 2.35, with limited variation during both clean and pollution periods, indicating significant impacts from on-road vehicle emissions. The morphology of rBC-containing particles vairied with aging processes. The mixing state of rBC particles could be indicated by the mass ratio of non-refractory matter to rBC (MR). In the present study, rBC-containing particles were primarily found in an external fractal structure when MR  6, at which the measured scattering cross section of rBC-containing particles was consistent with that based on the Mie-scattering simulation. We found only 9 % of the rBC-containing particles were in core-shell structures on clean days with a particle mass of 10 fg, and the number fraction of core-shell structures increased considerably to 32 % on pollution days. Considering the morphology change, the absorption enhancement (Eabs) was 11.7 % higher based on core-shell structures. This study highlights the combined effects of morphology and coating thickness on the Eabs of rBC-containing particles, which will be helpful for determining the climatic effects of BC.


Sign in / Sign up

Export Citation Format

Share Document