scholarly journals Retrieving atmospheric turbulence information from regular commercial aircraft using Mode-S and ADS-B

2016 ◽  
Vol 9 (5) ◽  
pp. 2253-2265 ◽  
Author(s):  
Jacek M. Kopeć ◽  
Kamil Kwiatkowski ◽  
Siebren de Haan ◽  
Szymon P. Malinowski

Abstract. Navigational information broadcast by commercial aircraft in the form of Mode-S EHS (Mode-S Enhanced Surveillance) and ADS-B (Automatic Dependent Surveillance–Broadcast) messages can be considered a new source of upper tropospheric and lower stratospheric turbulence estimates. A set of three processing methods is proposed and analysed using a quality record of turbulence encounters made by a research aircraft.The proposed methods are based on processing the vertical acceleration or the background wind into the eddy dissipation rate. Turbulence intensity can be estimated using the standard content of the Mode-S EHS/ADS-B.The results are based on a Mode-S EHS/ADS-B data set generated synthetically based on the transmissions from the research aircraft. This data set was validated using the overlapping record of the Mode-S EHS/ADS-B received from the same research aircraft. The turbulence intensity, meaning the eddy dissipation rate, obtained from the proposed methods based on the Mode-S EHS/ADS-B is compared with the value obtained using on-board accelerometer. The results of the comparison indicate the potential of the methods. The advantages and limitation of the presented approaches are discussed.

2015 ◽  
Vol 8 (11) ◽  
pp. 11817-11852 ◽  
Author(s):  
J. M. Kopeć ◽  
K. Kwiatkowski ◽  
S. de Haan ◽  
S. P. Malinowski

Abstract. Navigational information broadcast by commercial aircraft in the form of Mode-S and ADS-B messages can be considered a new and valid source of upper air turbulence measurements. A set of three processing methods is proposed and analysed using a quality record of turbulence encounters made by a research aircraft. The proposed methods are based on processing the vertical acceleration or the background wind into the eddy dissipation rate. All the necessary parameters are conveyed in the Mode-S/ADS-B messages. The comparison of the results of application of the processing against a reference eddy dissipation rate obtained using on-board accelerometer indicate a significant potential of those methods. The advantages and limitation of the presented approaches are discussed.


2014 ◽  
Vol 53 (6) ◽  
pp. 1416-1432 ◽  
Author(s):  
R. D. Sharman ◽  
L. B. Cornman ◽  
G. Meymaris ◽  
J. Pearson ◽  
T. Farrar

AbstractThe statistical properties of turbulence at upper levels in the atmosphere [upper troposphere and lower stratosphere (UTLS)] are still not well known, partly because of the lack of adequate routine observations. This is despite the obvious benefit that such observations would have for alerting aircraft of potentially hazardous conditions, either in real time or for route planning. To address this deficiency, a research project sponsored by the Federal Aviation Administration has developed a software package that automatically estimates and reports atmospheric turbulence intensity levels (as EDR ≡ ε1/3, where ε is the energy or eddy dissipation rate). The package has been tested and evaluated on commercial aircraft. The amount of turbulence data gathered from these in situ reports is unprecedented. As of January 2014, there are ~200 aircraft outfitted with this system, contributing to over 137 million archived records of EDR values through 2013, most of which were taken at cruise levels of commercial aircraft, that is, in the UTLS. In this paper, techniques used for estimating EDR are outlined and comparisons with pilot reports from the same or nearby aircraft are presented. These reports allow calibration of EDR in terms of traditionally reported intensity categories (“light,” “moderate,” or “severe”). The results of some statistical analyses of EDR values are also presented. These analyses are restricted to the United States for now, but, as this program is expanded to international carriers, such data will begin to become available over other areas of the globe.


2019 ◽  
Vol 147 (9) ◽  
pp. 3429-3444 ◽  
Author(s):  
Katelyn A. Barber ◽  
Wiebke Deierling ◽  
Gretchen Mullendore ◽  
Cathy Kessinger ◽  
Robert Sharman ◽  
...  

Abstract Convectively induced turbulence (CIT) is an aviation hazard that continues to be a forecasting challenge as operational forecast models are too coarse to resolve turbulence affecting aircraft. In particular, little is known about tropical maritime CIT. In this study, a numerical simulation of a tropical oceanic CIT case where severe turbulence was encountered by a commercial aircraft is performed. The Richardson number (Ri), subgrid-scale eddy dissipation rate (EDR), and second-order structure functions (SF) are used as diagnostics to determine which may be used for CIT related to developing and mature convection. Model-derived subgrid-scale EDR in past studies of midlatitude continental CIT was shown to be a good diagnostic of turbulence but underpredicted turbulence intensity and areal coverage in this tropical simulation. SF diagnosed turbulence with moderate to severe intensity near convection and agreed most with observations. Further, SF were used to diagnose turbulence for developing convection. Results show that the areal coverage of turbulence associated with developing convection is less than mature convection. However, the intensity of turbulence in the vicinity of developing convection is greater than the turbulence intensity in the vicinity of mature convection highlighting developing convection as an additional concern to aviation.


2021 ◽  
Author(s):  
Nicholas Dudu ◽  
Arturo Rodriguez ◽  
Gael Moran ◽  
Jose Terrazas ◽  
Richard Adansi ◽  
...  

Abstract Atmospheric turbulence studies indicate the presence of self-similar scaling structures over a range of scales from the inertial outer scale to the dissipative inner scale. A measure of this self-similar structure has been obtained by computing the fractal dimension of images visualizing the turbulence using the widely used box-counting method. If applied blindly, the box-counting method can lead to misleading results in which the edges of the scaling range, corresponding to the upper and lower length scales referred to above are incorporated in an incorrect way. Furthermore, certain structures arising in turbulent flows that are not self-similar can deliver spurious contributions to the box-counting dimension. An appropriately trained Convolutional Neural Network can take account of both the above features in an appropriate way, using as inputs more detailed information than just the number of boxes covering the putative fractal set. To give a particular example, how the shape of clusters of covering boxes covering the object changes with box size could be analyzed. We will create a data set of decaying isotropic turbulence scenarios for atmospheric turbulence using Large-Eddy Simulations (LES) and analyze characteristic structures arising from these. These could include contours of velocity magnitude, as well as of levels of a passive scalar introduced into the simulated flows. We will then identify features of the structures that can be used to train the networks to obtain the most appropriate fractal dimension describing the scaling range, even when this range is of limited extent, down to a minimum of one order of magnitude.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 132
Author(s):  
Jeffrey Chi Wai Lee ◽  
Christy Yan Yu Leung ◽  
Mang Hin Kok ◽  
Pak Wai Chan

A comparison was made of two eddy dissipation rate (EDR) estimates based on flight data recorded by commercial flights. The EDR estimates from real-time data using the National Center for Atmospheric Research (NCAR) Algorithm were compared with the EDR estimates derived using the Netherlands Aerospace Centre (NLR) Algorithm using quick assess recorder (QAR) data. The estimates were found to be in good agreement in general, although subtle differences were found. The agreement between the two algorithms was better when the flight was above 10,000 ft. The EDR estimates from the two algorithms were also compared with the vertical acceleration experienced by the aircraft. Both EDR estimates showed good correlation with the vertical acceleration and would effectively capture the turbulence subjectively experienced by pilots.


Author(s):  
Kenneth J. Davis ◽  
Edward V. Browell ◽  
Sha Feng ◽  
Thomas Lauvaux ◽  
Michael D. Obland ◽  
...  

AbstractThe Atmospheric Carbon and Transport (ACT) – America NASA Earth Venture Suborbital Mission set out to improve regional atmospheric greenhouse gas (GHG) inversions by exploring the intersection of the strong GHG fluxes and vigorous atmospheric transport that occurs within the midlatitudes. Two research aircraft instrumented with remote and in situ sensors to measure GHG mole fractions, associated trace gases, and atmospheric state variables collected 1140.7 flight hours of research data, distributed across 305 individual aircraft sorties, coordinated within 121 research flight days, and spanning five, six-week seasonal flight campaigns in the central and eastern United States. Flights sampled 31 synoptic sequences, including fair weather and frontal conditions, at altitudes ranging from the atmospheric boundary layer to the upper free troposphere. The observations were complemented with global and regional GHG flux and transport model ensembles. We found that midlatitude weather systems contain large spatial gradients in GHG mole fractions, in patterns that were consistent as a function of season and altitude. We attribute these patterns to a combination of regional terrestrial fluxes and inflow from the continental boundaries. These observations, when segregated according to altitude and air mass, provide a variety of quantitative insights into the realism of regional CO2 and CH4 fluxes and atmospheric GHG transport realizations. The ACT-America data set and ensemble modeling methods provide benchmarks for the development of atmospheric inversion systems. As global and regional atmospheric inversions incorporate ACT-America’s findings and methods, we anticipate these systems will produce increasingly accurate and precise sub-continental GHG flux estimates.


2021 ◽  
Author(s):  
Christiane Voigt ◽  
Jos Lelieveld ◽  
Hans Schlager ◽  
Johannes Schneider ◽  
Daniel Sauer ◽  
...  

<p>Worldwide regulations to control the COVID-19 pandemic caused significant reductions in ground and airborne transportation in spring 2020. This unprecedented situation provided the unique opportunity to directly measure the less perturbed atmosphere, notably near the tropopause, and derive the effects of anthropogenic emissions on atmospheric composition, aerosol, clouds and climate. These changes were investigated during the BLUESKY experiment by the two research aircraft HALO and the DLR Falcon, satellite observations and models. From 16 May to 9 June 2020, the two research aircraft performed 20 flights over Europe and the North Atlantic. Profiles of trace species were measured with an advanced in-situ trace gas, aerosol and cloud payload from the boundary layer to 14 km altitude. Here, we present an overview and selected highlights of the BLUESKY experiment. Continental aerosol profiles show significant reductions in aerosol mass in the boundary layer. The reduced aerosol optical thickness above Germany has also been detected by MODIS and its impact on the colour of the sky is investigated. A specific focus was the detection of aerosol and cirrus changes caused by up to 90% reductions in air traffic. We find reductions in fine mode aerosol in the UTLS at various levels compared to CARIBIC data. In addition, we derive reductions in contrail and cirrus cover using passive and active remote sensing from satellite combined with cloud modeling. The comprehensive data set acquired during the 2020 lockdown period allows better understanding and constraining the anthropogenic influence on the composition of the atmosphere and its impacts on air quality and climate.</p>


Data ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 69
Author(s):  
Mostafa A. Rushdi ◽  
Tarek N. Dief ◽  
Shigeo Yoshida ◽  
Roland Schmehl

Kites can be used to harvest wind energy with substantially lower material and environmental footprints and a higher capacity factor than conventional wind turbines. In this paper, we present measurement data from seven individual tow tests with the kite system developed by Kyushu University. This system was designed for 7 kW traction power and comprises an inflatable wing of 6 m2 surface area with a suspended kite control unit that is towed on a relatively short tether of 0.4 m by a truck driving at constant speed along a straight runway. To produce a controlled relative flow environment, the experiment was conducted only when the background wind speed was negligible. We recorded the time-series of 11 different sensor values acquired on the kite, the control unit and the truck. The measured data can be used to assess the effects of the towing speed, the flight mode and the lengths of the control lines on the tether force.


2003 ◽  
Vol 19 (8) ◽  
pp. 956-965 ◽  
Author(s):  
Y. D. He ◽  
H. Dai ◽  
E. E. Schadt ◽  
G. Cavet ◽  
S. W. Edwards ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document