scholarly journals Towing Test Data Set of the Kyushu University Kite System

Data ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 69
Author(s):  
Mostafa A. Rushdi ◽  
Tarek N. Dief ◽  
Shigeo Yoshida ◽  
Roland Schmehl

Kites can be used to harvest wind energy with substantially lower material and environmental footprints and a higher capacity factor than conventional wind turbines. In this paper, we present measurement data from seven individual tow tests with the kite system developed by Kyushu University. This system was designed for 7 kW traction power and comprises an inflatable wing of 6 m2 surface area with a suspended kite control unit that is towed on a relatively short tether of 0.4 m by a truck driving at constant speed along a straight runway. To produce a controlled relative flow environment, the experiment was conducted only when the background wind speed was negligible. We recorded the time-series of 11 different sensor values acquired on the kite, the control unit and the truck. The measured data can be used to assess the effects of the towing speed, the flight mode and the lengths of the control lines on the tether force.

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 11
Author(s):  
Domonkos Haffner ◽  
Ferenc Izsák

The localization of multiple scattering objects is performed while using scattered waves. An up-to-date approach: neural networks are used to estimate the corresponding locations. In the scattering phenomenon under investigation, we assume known incident plane waves, fully reflecting balls with known diameters and measurement data of the scattered wave on one fixed segment. The training data are constructed while using the simulation package μ-diff in Matlab. The structure of the neural networks, which are widely used for similar purposes, is further developed. A complex locally connected layer is the main compound of the proposed setup. With this and an appropriate preprocessing of the training data set, the number of parameters can be kept at a relatively low level. As a result, using a relatively large training data set, the unknown locations of the objects can be estimated effectively.


Author(s):  
Joost den Haan

The aim of the study is to devise a method to conservatively predict a tidal power generation based on relatively short current profile measurement data sets. Harmonic analysis on a low quality tidal current profile measurement data set only allowed for the reliable estimation of a limited number of constituents leading to a poor prediction of tidal energy yield. Two novel, but very different approaches were taken: firstly a quasi response function is formulated which combines the currents profiles into a single current. Secondly, a three dimensional vectorial tidal forcing model was developed aiming to support the harmonic analysis with upfront knowledge of the actual constituents. The response based approach allowed for a reasonable prediction. The vectorial tidal forcing model proved to be a viable start for a full featuring numerical model; even in its initial simplified form it could provide more insight than the conventional tidal potential models.


Agromet ◽  
2011 ◽  
Vol 25 (1) ◽  
pp. 24
Author(s):  
Satyanto Krido Saptomo

<em>Artificial neural network (ANN) approach was used to model energy dissipation process into sensible heat and latent heat (evapotranspiration) fluxes. The ANN model has 5 inputs which are leaf temperature T<sub>l</sub>, air temperature T<sub>a</sub>, net radiation R<sub>n</sub>, wind speed u<sub>c</sub> and actual vapor pressure e<sub>a</sub>. Adjustment of ANN was conducted using back propagation technique, employing measurement data of input and output parameters of the ANN. The estimation results using the adjusted ANN shows its capability in resembling the heat dissipation process by giving outputs of sensible and latent heat fluxes closed to its respective measurement values as the measured input values are given.  The ANN structure presented in this paper suits for modeling similar process over vegetated surfaces, but the adjusted parameters are unique. Therefore observation data set for each different vegetation and adjustment of ANN are required.</em>


2010 ◽  
Vol 4 (4) ◽  
pp. 355-363 ◽  
Author(s):  
Hiroshi Yachi ◽  
◽  
Hiroshi Tachiya

This paper proposes a calibration method for parallel mechanisms usingResponse Surface Methodology. This method is a statistical approach to estimating an unknown input-output relationship using a small set of efficient data collected on an intended system. Although identifying locations causing positional errors in a parallel mechanism and precisely measuring the position and posture of the output point are difficult, the proposed calibration method based onResponse Surface Methodologyaims to compensate for positional and postural errors, without indentifying the locations causing these errors, by using a small yet efficient measurement data set. This study analyzes the effectiveness of the method we propose by applying it to a Stewart platform, which is a typical spatial 6-DOF parallel mechanism.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 351 ◽  
Author(s):  
Jakob Pfeiffer ◽  
Xuyi Wu ◽  
Ahmed Ayadi

Deviations between High Voltage (HV) current measurements and the corresponding real values provoke serious problems in the power trains of Electric Vehicle (EVs). Examples for these problems have inaccurate performance coordinations and unnecessary power limitations during driving or charging. The main reason for the deviations are time delays. By correcting these delays with accurate Time Delay Estimation (TDE), our data shows that we can reduce the measurement deviations from 25% of the maximum current to below 5%. In this paper, we present three different approaches for TDE. We evaluate all approaches with real data from power trains of EVs. To enable an execution on automotive Electronic Control Unit (ECUs), the focus of our evaluation lies not only on the accuracy of the TDE, but also on the computational efficiency. The proposed Linear Regression (LR) approach suffers even from small noise and offsets in the measurement data and is unsuited for our purpose. A better alternative is the Variance Minimization (VM) approach. It is not only more noise-resistant but also very efficient after the first execution. Another interesting approach are Adaptive Filter (AFs), introduced by Emadzadeh et al. Unfortunately, AFs do not reach the accuracy and efficiency of VM in our experiments. Thus, we recommend VM for TDE of HV current signals in the power train of EVs and present an additional optimization to enable its execution on ECUs.


2019 ◽  
Vol 126 ◽  
pp. 00035
Author(s):  
Alexander Lavrov ◽  
Vladimir Shevtsov ◽  
Maksim Sidorov

In this paper authors described the algorithm for matching and harmonization the results of traction tests of domestic and foreign tractors according to the OECD and ISO systems. The results of the calculations are entered into the designed database, which contained 5 information blocks and control block. The control unit allows to implement a number of information requests (in terms of operating mass, maximum traction power, etc.). Information of agricultural tractors tests is contained in this database, test were made in Germany (11 models), France (8 models), Italy (8 models), and Austria, India, South Korea (over 37 models) according to OECD standards, each model tested on 2 type of covering: concrete and stubble.


2014 ◽  
Vol 505-506 ◽  
pp. 286-291
Author(s):  
Shu Yun Wu ◽  
Xu Hao Lv

Four rotary-wing micro air vehicles use four motors as the power unit, by adjusting the motor speed control flight of underactuated systems [. In order to achieve four-rotor autonomous vehicle autonomous flight control, preliminary design of flight control system, and use F5F100LEA single-chip as computer control unit, Proposed the flight system hardware design. Vehicle has the advantages of light weight, small size, low power consumption. After several laboratory tests, the design and reliable performance, to meet the aircraft take off, hover, landing flight mode control requirements.


2012 ◽  
Vol 12 (22) ◽  
pp. 10759-10769 ◽  
Author(s):  
N. I. Kristiansen ◽  
A. Stohl ◽  
G. Wotawa

Abstract. Caesium-137 (137Cs) and iodine-131 (131I) are radionuclides of particular concern during nuclear accidents, because they are emitted in large amounts and are of significant health impact. 137Cs and 131I attach to the ambient accumulation-mode (AM) aerosols and share their fate as the aerosols are removed from the atmosphere by scavenging within clouds, precipitation and dry deposition. Here, we estimate their removal times from the atmosphere using a unique high-precision global measurement data set collected over several months after the accident at the Fukushima Dai-ichi nuclear power plant in March 2011. The noble gas xenon-133 (133Xe), also released during the accident, served as a passive tracer of air mass transport for determining the removal times of 137Cs and 131I via the decrease in the measured ratios 137Cs/133Xe and 131I/133Xe over time. After correction for radioactive decay, the 137Cs/133Xe ratios reflect the removal of aerosols by wet and dry deposition, whereas the 131I/133Xe ratios are also influenced by aerosol production from gaseous 131I. We find removal times for 137Cs of 10.0–13.9 days and for 131I of 17.1–24.2 days during April and May 2011. The removal time of 131I is longer due to the aerosol production from gaseous 131I, thus the removal time for 137Cs serves as a better estimate for aerosol lifetime. The removal time of 131I is of interest for semi-volatile species. We discuss possible caveats (e.g. late emissions, resuspension) that can affect the results, and compare the 137Cs removal times with observation-based and modeled aerosol lifetimes. Our 137Cs removal time of 10.0–13.9 days should be representative of a "background" AM aerosol well mixed in the extratropical Northern Hemisphere troposphere. It is expected that the lifetime of this vertically mixed background aerosol is longer than the lifetime of fresh AM aerosols directly emitted from surface sources. However, the substantial difference to the mean lifetimes of AM aerosols obtained from aerosol models, typically in the range of 3–7 days, warrants further research on the cause of this discrepancy. Too short modeled AM aerosol lifetimes would have serious implications for air quality and climate model predictions.


1995 ◽  
Vol 16 (1) ◽  
pp. 163-166 ◽  
Author(s):  
P.A. Bradley ◽  
S.S. Kouris ◽  
Th. Xenos ◽  
M.I. Dick

Sign in / Sign up

Export Citation Format

Share Document