scholarly journals Improved mixing height monitoring through a combination of lidar and radon measurements

2012 ◽  
Vol 5 (5) ◽  
pp. 6835-6866 ◽  
Author(s):  
A. D. Griffiths ◽  
S. D. Parkes ◽  
S. D. Chambers ◽  
M. F. McCabe ◽  
A. G. Williams

Abstract. Surface-based radon (222Rn) measurements can be combined with lidar backscatter to obtain a higher quality time series of mixing height within the Planetary Boundary-Layer (PBL) than is possible from lidar alone, and a more quantitative measure of mixing height than is possible from only radon. The lidar measurements benefit because even when aerosol layers are detected, reliably attributing the mixing height to the correct layer presents a challenge. By combining lidar with a mixing length scale derived from a time series of radon concentration, automated and robust attribution is possible during the morning transition. Radon measurements also provide mixing information during the night and with the addition of lidar these measurements become insensitive to night-to-night changes in radon emissions. After calibration with lidar, the radon-derived equivalent mixing height agrees with other measures of mixing on daily and hourly time scales and is a potential method for studying intermittent mixing in nocturnal boundary layers.

2013 ◽  
Vol 6 (2) ◽  
pp. 207-218 ◽  
Author(s):  
A. D. Griffiths ◽  
S. D. Parkes ◽  
S. D. Chambers ◽  
M. F. McCabe ◽  
A. G. Williams

Abstract. Surface-based radon (222Rn) measurements can be combined with lidar backscatter to obtain a higher quality time series of mixing height within the planetary boundary layer (PBL) than is possible from lidar alone, and a more quantitative measure of mixing height than is possible from only radon. The reason why lidar measurements are improved is that there are times when lidar signals are ambiguous, and reliably attributing the mixing height to the correct aerosol layer presents a challenge. By combining lidar with a mixing length scale derived from a time series of radon concentration, automated and robust attribution is possible during the morning transition. Radon measurements provide mixing information during the night, but concentrations also depend on the strength of surface emissions. After processing radon in combination with lidar, we obtain nightly measurements of radon emissions and are able to normalise the mixing length scale for changing emissions. After calibration with lidar, the radon-derived equivalent mixing height agrees with other measures of mixing on daily and hourly timescales and is a potential method for studying intermittent mixing in nocturnal boundary layers.


2009 ◽  
Vol 26 (4) ◽  
pp. 673-688 ◽  
Author(s):  
Sara C. Tucker ◽  
Christoph J. Senff ◽  
Ann M. Weickmann ◽  
W. Alan Brewer ◽  
Robert M. Banta ◽  
...  

Abstract The concept of boundary layer mixing height for meteorology and air quality applications using lidar data is reviewed, and new algorithms for estimation of mixing heights from various types of lower-tropospheric coherent Doppler lidar measurements are presented. Velocity variance profiles derived from Doppler lidar data demonstrate direct application to mixing height estimation, while other types of lidar profiles demonstrate relationships to the variance profiles and thus may also be used in the mixing height estimate. The algorithms are applied to ship-based, high-resolution Doppler lidar (HRDL) velocity and backscattered-signal measurements acquired on the R/V Ronald H. Brown during Texas Air Quality Study (TexAQS) 2006 to demonstrate the method and to produce mixing height estimates for that experiment. These combinations of Doppler lidar–derived velocity measurements have not previously been applied to analysis of boundary layer mixing height—over the water or elsewhere. A comparison of the results to those derived from ship-launched, balloon-radiosonde potential temperature and relative humidity profiles is presented.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012053
Author(s):  
Ronald Macatangay ◽  
Worapop Thongsame ◽  
Raman Solanki ◽  
Ying-Jen Wu ◽  
Sheng-Hsiang Wang ◽  
...  

Abstract In this study, an improvement in the estimation of the mixing height is carried out by introducing a time-dependent maximum and minimum analysis altitude (TDMMAA) in the Haar wavelet covariance transform (WCT) technique applied to atmospheric light detection and ranging (LiDAR) measurements generally used in mixing height estimations. Results showed that the standard method usually overestimates the mixing height and that the proposed algorithm is more robust against clouds and residual layers in the boundary layer that generally occur in the nighttime and early morning. The TDMMAA method does have a bit of subjectivity especially in defining the analysis periods as well as the top and bottom of the analysis altitudes as it needs user experience and guidance. Moreover, the algorithm needs to be further objectively refined for automation and operational use, validated with in-situ profile measurements, and tested during different atmospheric conditions.


Author(s):  
Yagya Dutta Dwivedi ◽  
Vasishta Bhargava Nukala ◽  
Satya Prasad Maddula ◽  
Kiran Nair

Abstract Atmospheric turbulence is an unsteady phenomenon found in nature and plays significance role in predicting natural events and life prediction of structures. In this work, turbulence in surface boundary layer has been studied through empirical methods. Computer simulation of Von Karman, Kaimal methods were evaluated for different surface roughness and for low (1%), medium (10%) and high (50%) turbulence intensities. Instantaneous values of one minute time series for longitudinal turbulent wind at mean wind speed of 12 m/s using both spectra showed strong correlation in validation trends. Influence of integral length scales on turbulence kinetic energy production at different heights is illustrated. Time series for mean wind speed of 12 m/s with surface roughness value of 0.05 m have shown that variance for longitudinal, lateral and vertical velocity components were different and found to be anisotropic. Wind speed power spectral density from Davenport and Simiu profiles have also been calculated at surface roughness of 0.05 m and compared with k−1 and k−3 slopes for Kolmogorov k−5/3 law in inertial sub-range and k−7 in viscous dissipation range. At high frequencies, logarithmic slope of Kolmogorov −5/3rd law agreed well with Davenport, Harris, Simiu and Solari spectra than at low frequencies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
T. Dicu ◽  
B. D. Burghele ◽  
M. Botoş ◽  
A. Cucoș ◽  
G. Dobrei ◽  
...  

AbstractThe present study aims to identify novel means of increasing the accuracy of the estimated annual indoor radon concentration based on the application of temporal correction factors to short-term radon measurements. The necessity of accurate and more reliable temporal correction factors is in high demand, in the present age of speed. In this sense, radon measurements were continuously carried out, using a newly developed smart device accompanied by CR-39 detectors, for one full year, in 71 residential buildings located in 5 Romanian cities. The coefficient of variation for the temporal correction factors calculated for combinations between the start month and the duration of the measurement presented a low value (less than 10%) for measurements longer than 7 months, while a variability close to 20% can be reached by measurements of up to 4 months. Results obtained by generalized estimating equations indicate that average temporal correction factors are positively associated with CO2 ratio, as well as the interaction between this parameter and the month in which the measurement took place. The impact of the indoor-outdoor temperature differences was statistically insignificant. The obtained results could represent a reference point in the elaboration of new strategies for calculating the temporal correction factors and, consequently, the reduction of the uncertainties related to the estimation of the annual indoor radon concentration.


Author(s):  
Lewis P. Blunn ◽  
Omduth Coceal ◽  
Negin Nazarian ◽  
Janet F. Barlow ◽  
Robert S. Plant ◽  
...  

AbstractGood representation of turbulence in urban canopy models is necessary for accurate prediction of momentum and scalar distribution in and above urban canopies. To develop and improve turbulence closure schemes for one-dimensional multi-layer urban canopy models, turbulence characteristics are investigated here by analyzing existing large-eddy simulation and direct numerical simulation data. A range of geometries and flow regimes are analyzed that span packing densities of 0.0625 to 0.44, different building array configurations (cubes and cuboids, aligned and staggered arrays, and variable building height), and different incident wind directions ($$0^\circ $$ 0 ∘ and $$45^\circ $$ 45 ∘ with regards to the building face). Momentum mixing-length profiles share similar characteristics across the range of geometries, making a first-order momentum mixing-length turbulence closure a promising approach. In vegetation canopies turbulence is dominated by mixing-layer eddies of a scale determined by the canopy-top shear length scale. No relationship was found between the depth-averaged momentum mixing length within the canopy and the canopy-top shear length scale in the present study. By careful specification of the intrinsic averaging operator in the canopy, an often-overlooked term that accounts for changes in plan area density with height is included in a first-order momentum mixing-length turbulence closure model. For an array of variable-height buildings, its omission leads to velocity overestimation of up to $$17\%$$ 17 % . Additionally, we observe that the von Kármán coefficient varies between 0.20 and 0.51 across simulations, which is the first time such a range of values has been documented. When driving flow is oblique to the building faces, the ratio of dispersive to turbulent momentum flux is larger than unity in the lower half of the canopy, and wake production becomes significant compared to shear production of turbulent momentum flux. It is probable that dispersive momentum fluxes are more significant than previously thought in real urban settings, where the wind direction is almost always oblique.


Atmosphere ◽  
2015 ◽  
Vol 6 (9) ◽  
pp. 1346-1361 ◽  
Author(s):  
Xueliang Feng ◽  
Bingfang Wu ◽  
Nana Yan

1972 ◽  
Vol 94 (1) ◽  
pp. 23-28 ◽  
Author(s):  
E. Brundrett ◽  
W. B. Nicoll ◽  
A. B. Strong

The van Driest damped mixing length has been extended to account for the effects of mass transfer through a porous plate into a turbulent, two-dimensional incompressible boundary layer. The present mixing length is continuous from the wall through to the inner-law region of the flow, and although empirical, has been shown to predict wall shear stress and heat transfer data for a wide range of blowing rates.


Author(s):  
Mark W. Johnson

A numerical procedure for predicting the receptivity of laminar boundary layers to freestream turbulence consisting of vortex arrays with arbitrary orientation has been developed. Results show that the boundary layer is most receptivity to those vortices which have their axes approximately in the streamwise direction and vortex wavelengths of approximately 1.2 δ. The computed near wall gains for isotropic turbulence are similar in magnitude to previously published experimental values used to predict transition. The new procedure is therefore capable of predicting the development of the fluctuations in the laminar boundary layer from values of the freestream turbulence intensity and length scale and hence determining the start of transition without resorting to any empirical correlation.


2021 ◽  
Author(s):  
Ginaldi Ari Nugroho ◽  
Kosei Yamaguchi ◽  
Eiichi Nakakita ◽  
Masayuki K. Yamamoto ◽  
Seiji Kawamura ◽  
...  

<p>Detailed observation of small scale perturbation in the atmospheric boundary layer during the first generated cumulus cloud are conducted. Our target is to study this small scale perturbation, especially related to the thermal activity at the first generated cumulus cloud. The observation is performed during the daytime on August 17, 2018, and September 03, 2018. Location is focused in the urban area of Kobe, Japan. High-resolution instruments such as Boundary Layer Radar, Doppler Lidar, and Time Lapse camera are used in this observation. Boundary Layer Radar, and Doppler Lidar are used for clear air observation. Meanwhile Time Lapse Camera are used for cloud existence observation. The atmospheric boundary layer structure is analyzed based on vertical velocity profile, variance, skewness, and estimated atmospheric boundary layer height. Wavelet are used to observe more of the period of the thermal activity. Furthermore, time correlation between vertical velocity time series from height 0.3 to 2 km and image pixel of generated cloud time series are also discussed in this study.</p>


Sign in / Sign up

Export Citation Format

Share Document