scholarly journals Comparison of SMILES ClO profiles with other satellite and balloon-based measurements

2013 ◽  
Vol 6 (1) ◽  
pp. 613-663 ◽  
Author(s):  
H. Sagawa ◽  
T. O. Sato ◽  
P. Baron ◽  
E. Dupuy ◽  
N. Livesey ◽  
...  

Abstract. We evaluate the quality of ClO profiles derived from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the International Space Station (ISS). Version 2.1.5 of the level-2 product generated by the National Institute of Information and Communications Technology (NICT) is the subject of this study. Based on error analysis simulations the systematic error was estimated as 5–10 pptv at the pressure range of 80–20 hPa, 35 pptv at the ClO peak altitude (~ 4 hPa), and 5–10 pptv at pressures ≤ 0.5 hPa for daytime mid-latitude conditions. For nighttime measurements, a systematic error of 8 pptv was estimated for the ClO peak altitude (~ 2 hPa). The SMILES NICT v2.1.5 ClO profiles agree with those derived from another level-2 processor developed by JAXA within of the bias uncertainties, except for the nighttime measurements in the low and middle latitude region where the SMILES NICT v2.1.5 profiles have a negative bias of ~ 30 pptv in the lower stratosphere. This bias is considered to be due to the use of a limited spectral bandwidth in the retrieval process, which makes it difficult to distinguish between the ClO signal and wing contributions of spectral features outside the bandwidth. In the middle and upper stratosphere outside the polar regions, no significant systematic bias was found for the SMILES NICT ClO profile with respect to datasets from other instruments such as the Aura Microwave Limb Sounder (MLS), the Odin Sub-Millimetre Radiometer (SMR), and the Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which demonstrates the scientific usability of the SMILES ClO data including the diurnal variations. Inside the chlorine-activated polar vortex the SMILES NICT v2.1.5 ClO profiles show larger volume mixing ratios by 0.3 ppbv (30%) at 50 hPa compared to those of the JAXA processed profiles. This discrepancy is also considered to be an effect of the limited spectral bandwidth in the retrieval processing. We also compared the SMILES NICT ClO profiles of chlorine-activated polar vortex conditions with those measured by the balloon-borne instruments Terahertz and submillimeter Limb Sounder (TELIS) and the MIPAS-balloon (MIPAS-B).

2013 ◽  
Vol 6 (12) ◽  
pp. 3325-3347 ◽  
Author(s):  
H. Sagawa ◽  
T. O. Sato ◽  
P. Baron ◽  
E. Dupuy ◽  
N. Livesey ◽  
...  

Abstract. We evaluate the quality of ClO profiles derived from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the International Space Station (ISS). Version 2.1.5 of the level-2 product generated by the National Institute of Information and Communications Technology (NICT) is the subject of this study. Based on sensitivity studies, the systematic error was estimated as 5–10 pptv at the pressure range of 80–20 hPa, 35 pptv at the ClO peak altitude (~ 4 hPa), and 5–10 pptv at pressures ≤ 0.5 hPa for daytime mid-latitude conditions. For nighttime measurements, a systematic error of 8 pptv was estimated for the ClO peak altitude (~ 2 hPa). The SMILES NICT v2.1.5 ClO profiles agree with those derived from another level-2 processor developed by the Japan Aerospace Exploration Agency (JAXA) within the bias uncertainties, except for the nighttime measurements in the low and middle latitude regions where the SMILES NICT v2.1.5 profiles have a negative bias of ~ 30 pptv in the lower stratosphere. This bias is considered to be due to the use of a limited spectral bandwidth in the retrieval process of SMILES NICT v2.1.5, which makes it difficult to distinguish between the weak ClO signal and wing contributions of spectral features outside the bandwidth. In the middle and upper stratosphere outside the polar regions, no significant systematic bias was found for the SMILES NICT ClO profile with respect to data sets from other instruments such as the Aura Microwave Limb Sounder (MLS), the Odin Sub-Millimetre Radiometer (SMR), the Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), and the ground-based radiometer at Mauna Kea, which demonstrates the scientific usability of the SMILES ClO data including the diurnal variations. Inside the chlorine-activated polar vortex, the SMILES NICT v2.1.5 ClO profiles show larger volume mixing ratios by 0.4 ppbv (30%) at 50 hPa compared to those of the JAXA processed profiles. This discrepancy is also considered to be an effect of the limited spectral bandwidth in the retrieval processing. We also compared the SMILES NICT ClO profiles of chlorine-activated polar vortex conditions with those measured by the balloon-borne instruments: Terahertz and submillimeter Limb Sounder (TELIS) and the MIPAS-balloon instrument (MIPAS-B). In conclusion, the SMILES NICT v2.1.5 ClO data can be used at pressures ≤ ~30 hPa for scientific analysis.


2021 ◽  
Author(s):  
Paolo Pettinari ◽  
Flavio Barbara ◽  
Simone Ceccherini ◽  
Bianca Maria Dinelli ◽  
Marco Gai ◽  
...  

Abstract. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) measured the middle-infrared limb emission spectrum of the atmosphere from 2002 to 2012 on board ENVISAT, a polar-orbiting satellite. Recently, the European Space Agency (ESA) completed the final reprocessing of MIPAS measurements, using Version 8 of the Level 1 and Level 2 processors, which include more accurate models, processing strategies and auxiliary data. The list of retrieved gases has been extended, it now includes a number of new species with weak emission features in the MIPAS spectral range. The new retrieved trace species include carbonyl chloride (COCl2), also called phosgene. Due to its toxicity, its use has been reduced over the years, however it is still used by chemical industries for sevaeral applications. Besides its direct injection in the troposphere, stratospheric phosgene is mainly produced from the photolysis of CCl4, a molecule present in the atmosphere because of human activity. Since phosgene has a long stratospheric lifetime, it must be carefully monitored as it is involved in the ozone destruction cycles, especially over the winter polar regions. In this paper we exploit the ESA MIPAS Version 8 data in order to discuss the phosgene distribution, variability and trends in the middle and lower stratosphere and in the upper troposphere. The zonal averages show that phosgene volume mixing ratio is larger in the stratosphere, with a peak of 40 pptv between 50 and 30 hPa at equatorial latitudes, while at middle and polar latitudes it varies from 10 to 25 pptv. A moderate seasonal variability is observed in polar regions, mostly between 80 and 50 hPa. The comparison of MIPAS/ENVISAT COCl2 v.8 profiles with the ones retrieved from MIPAS/balloon and ACE-FTS measurements highlights a negative bias of about 2 pptv, mainly in polar and mid-latitude regions. Part of this bias is attributed to the fact that the ESA Level 2 v.8 processor uses an updated spectroscopic database. For the trend computation, a fixed pressure grid is used to interpolate the phosgene profiles and, for each pressure level, VMR monthly averages are computed in pre-defined 10°-wide latitude bins. Then, for each latitudinal bin and pressure level, a regression model has been fitted to the resulting time-series in order to derive the atmospheric trends. We find that the phosgene trends are different in the two hemispheres. The analysis shows that the stratosphere of the Northern Hemisphere is characterised by a negative trend, of about −7 pptv/decade, while in the Southern Hemisphere phosgene mixing ratios increase with a rate of the order of +4 pptv/decade. In the upper troposphere a positive trend is found in both hemispheres.


2021 ◽  
Vol 14 (12) ◽  
pp. 7959-7974
Author(s):  
Paolo Pettinari ◽  
Flavio Barbara ◽  
Simone Ceccherini ◽  
Bianca Maria Dinelli ◽  
Marco Gai ◽  
...  

Abstract. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) measured the middle-infrared limb emission spectrum of the atmosphere from 2002 to 2012 on board ENVISAT, a polar-orbiting satellite. Recently, the European Space Agency (ESA) completed the final reprocessing of MIPAS measurements, using version 8 of the level 1 and level 2 processors, which include more accurate models, processing strategies, and auxiliary data. The list of retrieved gases has been extended, and it now includes a number of new species with weak emission features in the MIPAS spectral range. The new retrieved trace species include carbonyl chloride (COCl2), also called phosgene. Due to its toxicity, its use has been reduced over the years; however, it is still used by chemical industries for several applications. Besides its direct injection in the troposphere, stratospheric phosgene is mainly produced from the photolysis of CCl4, a molecule present in the atmosphere because of human activity. Since phosgene has a long stratospheric lifetime, it must be carefully monitored as it is involved in the ozone destruction cycles, especially over the winter polar regions. In this paper we exploit the ESA MIPAS version 8 data in order to discuss the phosgene distribution, variability, and trends in the middle and lower stratosphere and in the upper troposphere. The zonal averages show that phosgene volume mixing ratio is larger in the stratosphere, with a peak of 40 pptv (parts per trillion by volume) between 50 and 30 hPa at equatorial latitudes, while at middle and polar latitudes it varies from 10 to 25 pptv. A moderate seasonal variability is observed in polar regions, mostly between 80 and 50 hPa. The comparison of MIPAS–ENVISAT COCl2 v8 profiles with the ones retrieved from MIPAS balloon and ACE-FTS (Atmospheric Chemistry Experiment – Fourier Transform Spectrometer) measurements highlights a negative bias of about 2 pptv, mainly in polar and mid-latitude regions. Part of this bias is attributed to the fact that the ESA level 2 v8 processor uses an updated spectroscopic database. For the trend computation, a fixed pressure grid is used to interpolate the phosgene profiles, and, for each pressure level, VMR (volume mixing ratio) monthly averages are computed in pre-defined 10∘ wide latitude bins. Then, for each latitudinal bin and pressure level, a regression model has been fitted to the resulting time series in order to derive the atmospheric trends. We find that the phosgene trends are different in the two hemispheres. The analysis shows that the stratosphere of the Northern Hemisphere is characterized by a negative trend of about −7 pptv per decade, while in the Southern Hemisphere phosgene mixing ratios increase with a rate of the order of +4 pptv per decade. This behavior resembles the stratospheric trend of CCl4, which is the main stratospheric source of COCl2. In the upper troposphere a positive trend is found in both hemispheres.


2021 ◽  
Author(s):  
Peter L. Read ◽  
Arrate Antuñano ◽  
Simon Cabanes ◽  
Greg Colyer ◽  
Teresa del Rio-Gaztelurrutia ◽  
...  

<p>The regions of Saturn’s cloud-covered atmosphere polewards of 60<sup>o</sup> latitude are dominated in each hemisphere near the cloud tops by an intense, cyclonic polar vortex surrounded by a strong, high latitude eastward zonal jet. In the north, this high latitude jet takes the form of a remarkably regular zonal wavenumber m=6 hexagonal pattern that has been present at least since the Voyager spacecraft encounters with Saturn in 1980-81, and probably much longer. The origin of this feature, and the absence of a similar feature in the south, has remained poorly understood since its discovery. In this work, we present some new analyses of horizontal wind measurements at Saturn’s cloud tops polewards of 60 degrees in both the northern and southern hemispheres, previously published by Antuñano et al. (2015) using images from the Cassini mission, in which we compute kinetic energy spectra and the transfer rates of kinetic energy (KE) and enstrophy between different scales. 2D KE spectra are consistent with a zonostrophic regime, with a steep (~n<sup>-5</sup>) spectrum for the mean zonal flow (n is the total wavenumber) and a shallower Kolmogorov-like KE spectrum (~n<sup>-5/3</sup>) for the residual (eddy) flow, much as previously found for Jupiter’s atmosphere (Galperin et al. 2014; Young & Read 2017). Three different methods are used to compute the energy and enstrophy transfers, (a) as latitude-dependent zonal spectral fluxes, (b) as latitude-dependent structure functions and (c) as spatially filtered energy fluxes. The results of all three methods are largely in agreement in indicating a direct (forward) enstrophy cascade across most scales, averaged across the whole domain, an inverse kinetic energy cascade to large scales and a weak direct KE cascade at the smallest scales. The pattern of transfers has a more complex dependence on latitude, however. But it is clear that the m=6 North Polar Hexagon (NPH) wave was transferring KE into its zonal jet at 78<sup>o</sup> N (planetographic) at a rate of ∏<sub>E</sub> ≈ 1.8 x 10<sup>-4</sup> W kg<sup>-1</sup> at the time the Cassini images were acquired. This implies that the NPH was not maintained by a barotropic instability at this time, but may have been driven via a baroclinic instability or possibly from deep convection. Further implications of these results will be discussed.</p><p> </p><p>References</p><p>Antuñano, A., T. del Río-Gaztelurrutia, A. Sánchez-Lavega, and R. Hueso (2015), Dynamics of Saturn’s polar regions, J. Geophys. Res. Planets, 120, 155–176, doi:10.1002/2014JE004709.</p><p>Galperin, B., R. M.B. Young, S. Sukoriansky, N. Dikovskaya, P. L. Read, A. J. Lancaster & D. Armstrong (2014) Cassini observations reveal a regime of zonostrophic macroturbulence on Jupiter, Icarus, 229, 295–320.doi: 10.1016/j.icarus.2013.08.030</p><p>Young, R. M. B. & Read, P. L. (2017) Forward and inverse kinetic energy cascades in Jupiter’s turbulent weather layer, Nature Phys., 13, 1135-1140. Doi:10.1038/NPHYS4227</p><div> <div> <div> </div> </div> <div> <div> </div> </div> <div> <div> </div> </div> <div> <div> </div> </div> </div>


2016 ◽  
Author(s):  
Norbert Glatthor ◽  
Michael Höpfner ◽  
Adrian Leyser ◽  
Gabriele P. Stiller ◽  
Thomas von Clarmann ◽  
...  

Abstract. We present a global OCS data set covering the period June 2002 to April 2012, derived from FTIR limb emission spectra measured with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on the ENVISAT satellite. The vertical resolution is 4–5 km in the height region 6–15 km and 15 km at 40 km altitude. The total estimated error amounts to 40–50 pptv between 10 and 20 km and to 120 pptv at 40 km altitude. MIPAS OCS data show no systematic bias with respect to balloon observations, with deviations mostly below ±50 pptv. However, they are systematically higher than the OCS volume mixing ratios of the ACE-FTS instrument on SCISAT, with maximum deviations of up to 100 pptv in the altitude region 13–16 km. The data set of MIPAS OCS exhibits only moderate interannual variations and low interhemispheric differences. Average concentrations at 10 km altitude range from 480 pptv at high latitudes to 500–510 pptv in the tropics and at northern mid-latitudes. Seasonal variations at 10 km altitude amount up to 35 pptv in the northern and up to 15 pptv in the southern hemisphere. Northern hemispheric OCS abundances at 10 km altitude peak in June in the tropics and around October at high latitudes, while the respective southern hemispheric maxima were observed in July and in November. Global OCS distributions at 250 hPa (~ 10–11 km) show enhanced values at low latitudes, peaking during boreal summer above the western Pacific and the Indian Ocean, which indicates oceanic release. Further, a region of depleted OCS amounts extending from Brazil to central and southern Africa was detected at this altitude, which is most pronounced in austral summer. This depletion is related to seasonally varying vegetative uptake by the tropical forests. Typical signatures of biomass burning like the southern hemispheric biomass burning plume are not visible in MIPAS data, indicating that this process is only a minor source of tropospheric OCS. At the 150 hPa level (~ 13–14 km) enhanced amounts of OCS were also observed inside the Asian Monsoon Anticyclone, but this enhancement is not especially outstanding as compared to other low latitude regions at the same altitude. At the 80 hPa level (~ 17–18 km) equatorward transport of mid-latitude air masses containing lower OCS amounts around the summertime anticyclones was observed. A significant trend could not be detected in tropospheric MIPAS OCS amounts, which points to globally balanced sources and sinks.


2018 ◽  
Vol 11 (8) ◽  
pp. 4693-4705 ◽  
Author(s):  
Alexandra Laeng ◽  
Ellen Eckert ◽  
Thomas von Clarmann ◽  
Michael Kiefer ◽  
Daan Hubert ◽  
...  

Abstract. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) was an infrared limb emission spectrometer on the Envisat platform. From 2002 to 2012, it performed pole-to-pole measurements during day and night, producing more than 1000 profiles per day. The European Space Agency (ESA) recently released the new version 7 of Level 1B MIPAS spectra, in which a new set of time-dependent correction coefficients for the nonlinearity in the detector response functions was implemented. This change is expected to reduce the long-term drift of the MIPAS Level 2 data. We evaluate the long-term stability of ozone Level 2 data retrieved from MIPAS v7 Level 1B spectra with the IMK/IAA scientific level 2 processor. For this, we compare MIPAS data with ozone measurements from the Microwave Limb Sounder (MLS) instrument on NASA's Aura satellite, ozonesondes and ground-based lidar instruments. The ozonesondes and lidars alone do not allow us to conclude with enough significance that the new version is more stable than the previous one, but a clear improvement in long-term stability is observed in the satellite-data-based drift analysis. The results of ozonesondes, lidars and satellite drift analysis are consistent: all indicate that the drifts of the new version are less negative/more positive nearly everywhere above 15 km. The 10-year MIPAS ozone trends calculated from the old and the new data versions are compared. The new trends are closer to old drift-corrected trends than the old uncorrected trends were. From this, we conclude that the nonlinearity correction performed on Level 1B data is an improvement. These results indicate that MIPAS data are now even more suited for trend studies, alone or as part of a merged data record.


2019 ◽  
Author(s):  
Emmanouil Proestakis ◽  
Vassilis Amiridis ◽  
Eleni Marinou ◽  
Ioannis Binietoglou ◽  
Albert Ansmann ◽  
...  

Abstract. We present the evaluation activity of the European Aerosol Research Lidar Network (EARLINET) for the quantitative assessment of the Level 2 aerosol backscatter coefficient product derived by the Cloud-Aerosol Transport System (CATS) onboard the International Space Station (ISS). The study employs correlative CATS and EARLINET backscatter measurements within 50 km distance between the ground station and the ISS overpass and as close in time as possible, typically within 90 min, from February 2015 to September 2016. The results demonstrate the good agreement of CATS Level 2 backscatter coefficient and EARLINET. Three ISS overpasses close to the EARLINET stations of Leipzig-Germany, Évora-Portugal and Dushanbe-Tajikistan are analysed here to demonstrate the performance of CATS lidar system under different conditions. The results show that under cloud-free, relative homogeneous aerosol conditions CATS is in good agreement with EARLINET, independently of daytime/nighttime conditions. CATS low negative biases, partially attributed to the deficiency of lidar systems to detect tenuous aerosol layers of backscatter signal below the minimum detection thresholds, may lead to systematic deviations and slight underestimations of the total Aerosol Optical Depth (AOD) in climate studies. In addition, CATS misclassification of aerosol layers as clouds, and vice versa, in cases of coexistent and/or adjacent aerosol and cloud features, may lead to non-representative, unrealistic and cloud contaminated aerosol profiles. The distributions of backscatter coefficient biases show the relatively good agreement between the CATS and EARLINET measurements, although on average underestimations are observed, 22.3 % during daytime and 6.1 % during nighttime.


2019 ◽  
Vol 11 (13) ◽  
pp. 1616 ◽  
Author(s):  
Zhilu Wu ◽  
Jungang Wang ◽  
Yanxiong Liu ◽  
Xiufeng He ◽  
Yang Liu ◽  
...  

Haiyang-2A (HY-2A) has been working in-flight for over seven years, and the accuracy of HY-2A calibration microwave radiometer (CMR) data is extremely important for the wet troposphere delay correction (WTC) in sea surface height (SSH) determination. We present a comprehensive evaluation of the HY-2A CMR observation using the numerical weather model (NWM) for all the data available period from October 2011 to February 2018, including the WTC and the precipitable water vapor (PWV). The ERA(ECMWF Re-Analysis)-Interim products from European Centre for Medium-Range Weather Forecasts (ECMWF) are used for the validation of HY-2A WTC and PWV products. In general, a global agreement of root-mean-square (RMS) of 2.3 cm in WTC and 3.6 mm in PWV are demonstrated between HY-2A observation and ERA-Interim products. Systematic biases are revealed where before 2014 there was a positive WTC/PWV bias and after that, a negative one. Spatially, HY-2A CMR products show a larger bias in polar regions compared with mid-latitude regions and tropical regions and agree better in the Antarctic than in the Arctic with NWM. Moreover, HY-2A CMR products have larger biases in the coastal area, which are all caused by the brightness temperature (TB) contamination from land or sea ice. Temporally, the WTC/PWV biases increase from October 2011 to March 2014 with a systematic bias over 1 cm in WTC and 2 mm in PWV, and the maximum RMS values of 4.62 cm in WTC and 7.61 mm in PWV occur in August 2013, which is because of the unsuitable retrieval coefficients and systematic TB measurements biases from 37 GHz band. After April 2014, the TB bias is corrected, HY-2A CMR products agree very well with NWM from April 2014 to May 2017 with the average RMS of 1.68 cm in WTC and 2.65 mm in PWV. However, since June 2017, TB measurements from the 18.7 GHz band become unstable, which led to the huge differences between HY-2A CMR products and the NWM with an average RMS of 2.62 cm in WTC and 4.33 mm in PWV. HY-2A CMR shows high accuracy when three bands work normally and further calibration for HY-2A CMR is in urgent need. Furtherly, 137 global coastal radiosonde stations were used to validate HY-2A CMR. The validation based on radiosonde data shows the same variation trend in time of HY-2A CMR compared to the results from ECMWF, which verifies the results from ECMWF.


2014 ◽  
Vol 14 (23) ◽  
pp. 12855-12869 ◽  
Author(s):  
K. Sagi ◽  
D. Murtagh ◽  
J. Urban ◽  
H. Sagawa ◽  
Y. Kasai

Abstract. The Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on board the International Space Station observed ozone in the stratosphere with high precision from October 2009 to April 2010. Although SMILES measurements only cover latitudes from 38° S to 65° N, the combination of data assimilation methods and an isentropic advection model allows us to quantify the ozone depletion in the 2009/2010 Arctic polar winter by making use of the instability of the polar vortex in the northern hemisphere. Ozone data from both SMILES and Odin/SMR (Sub-Millimetre Radiometer) for the winter were assimilated into the Dynamical Isentropic Assimilation Model for OdiN Data (DIAMOND). DIAMOND is an off-line wind-driven transport model on isentropic surfaces. Wind data from the operational analyses of the European Centre for Medium- Range Weather Forecasts (ECMWF) were used to drive the model. In this study, particular attention is paid to the cross isentropic transport of the tracer in order to accurately assess the ozone loss. The assimilated SMILES ozone fields agree well with the limitation of noise induced variability within the SMR fields despite the limited latitude coverage of the SMILES observations. Ozone depletion has been derived by comparing the ozone field acquired by sequential assimilation with a passively transported ozone field initialized on 1 December 2009. Significant ozone loss was found in different periods and altitudes from using both SMILES and SMR data: The initial depletion occurred at the end of January below 550 K with an accumulated loss of 0.6–1.0 ppmv (approximately 20%) by 1 April. The ensuing loss started from the end of February between 575 K and 650 K. Our estimation shows that 0.8–1.3 ppmv (20–25 %) of O3 has been removed at the 600 K isentropic level by 1 April in volume mixing ratio (VMR).


Sign in / Sign up

Export Citation Format

Share Document