scholarly journals Retrieval of sulphur dioxide from a ground-based thermal infrared imaging camera

2014 ◽  
Vol 7 (2) ◽  
pp. 1153-1211 ◽  
Author(s):  
A. J. Prata ◽  
C. Bernardo

Abstract. Recent advances in uncooled detector technology now offer the possibility of using relatively inexpensive thermal (7 to 14 μm) imaging devices as tools for studying and quantifying the behaviour of hazardous gases and particulates in atmospheric plumes. An experimental fast-sampling (60 Hz) ground-based uncooled thermal imager (Cyclops), operating with four spectral channels at central wavelengths of 8.6, 10, 11, and 12 μm and one broadband channel (7–14 μm), has been tested at several volcanoes and at two industrial sites, where SO2 was a major constituent of the plumes. This paper presents new algorithms, which include atmospheric corrections to the data and better calibrations to show that SO2 slant column density can be reliably detected and quantified. Our results indicate that it is relatively easy to identify and discriminate SO2 in plumes, but more challenging to quantify the column densities. A full description of the retrieval algorithms, illustrative results and a detailed error analysis are provided. The Noise-Equivalent Temperature Difference (NEΔT) of the spectral channels, a fundamental measure of the quality of the measurements, lies between 0.4–0.8 K, resulting in slant column density errors of 20%. Frame averaging and improved NEΔT's can reduce this error to less than 10%, making a stand-off, day or night operation of an instrument of this type very practical for both monitoring industrial SO2 emissions and for SO2 column densities and emission measurements at active volcanoes. The imaging camera system may also be used to study thermal radiation from meteorological clouds and from the atmosphere.

2014 ◽  
Vol 7 (9) ◽  
pp. 2807-2828 ◽  
Author(s):  
A. J. Prata ◽  
C. Bernardo

Abstract. Recent advances in uncooled detector technology now offer the possibility of using relatively inexpensive thermal (7 to 14 μm) imaging devices as tools for studying and quantifying the behaviour of hazardous gases and particulates in atmospheric plumes. An experimental fast-sampling (60 Hz) ground-based uncooled thermal imager (Cyclops), operating with four spectral channels at central wavelengths of 8.6, 10, 11 and 12 μm and one broadband channel (7–14 μm) has been tested at several volcanoes and at an industrial site, where SO2 was a major constituent of the plumes. This paper presents new algorithms, which include atmospheric corrections to the data and better calibrations to show that SO2 slant column density can be reliably detected and quantified. Our results indicate that it is relatively easy to identify and discriminate SO2 in plumes, but more challenging to quantify the column densities. A full description of the retrieval algorithms, illustrative results and a detailed error analysis are provided. The noise-equivalent temperature difference (NEΔT) of the spectral channels, a fundamental measure of the quality of the measurements, lies between 0.4 and 0.8 K, resulting in slant column density errors of 20%. Frame averaging and improved NEΔT's can reduce this error to less than 10%, making a stand-off, day or night operation of an instrument of this type very practical for both monitoring industrial SO2 emissions and for SO2 column densities and emission measurements at active volcanoes. The imaging camera system may also be used to study thermal radiation from meteorological clouds and the atmosphere.


2020 ◽  
Vol 44 (6) ◽  
pp. 2277-2285
Author(s):  
Antonio Scarano ◽  
Francesco Carinci ◽  
Valentina Candotto ◽  
Felice Lorusso

Abstract Objectives The face aging processes are associated with physiologic and biochemical alteration that produces wrinkles, skin pigmentation and benign growths. The aim of this study was to evaluate the clinical efficacy of voltaic arc dermabrasion with plasma to remove benign facial skin lesions. Study Design Voltaic arc dermabrasion plasma technique was used to remove the facial benign skin lesions. The study involved 45 patients (26 females;19 males) treated for benign facial skin lesions with voltaic arc dermabrasion also called plasma exeresis technique. The subjects age ranged between 43 and 65 years. The clinical observations and comparison of pretreatment and post-treatment photographs of the treated regions were performed by a joint examiner at each follow-up visit. Results During plasma irradiation, the average temperature of the skin was 290.3 ± 21.7 °C, while immediately after it was 90.6 ± 21.8 °C. Overall clinical improvement was 100% in six lesions with complete resolution of all lesions. Three patients observed a transient post-inflammatory pigmentation with a peak at 1 month after VAD treatment, gradually fading spontaneously over 2 to 3 months. Conclusions The voltaic arc dermabrasion technique (atmospheric plasma) should be considered for lesions, especially relatively superficial ones, and small lesions that are located on the face. Level of Evidence IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.


2008 ◽  
pp. 347-359 ◽  
Author(s):  
David J. Schneider ◽  
James W. Vallance ◽  
Rick L. Wessels ◽  
Matthew Logan ◽  
Michael S. Ramsey

2015 ◽  
Vol 762 ◽  
pp. 55-60
Author(s):  
Georgia Cezara Avram ◽  
Florin Adrian Nicolescu ◽  
Radu Constantin Parpală ◽  
Constantin Dumitrascu

This paper presents the works carried out by the authors in the field of structural and functional optimization of industrial robot's numerically controlled (NC) axes. The study includes the results obtained in the research stage of the experimental measurements performed to evaluate the electrical servomotor's thermal behavior using a thermal (infrared) imaging camera. The analyzed servomotor is a brushless servomotor integrated in an experimental stand for linear motion NC axis experimental research, existing in the MMS department from EMTS faculty. Supplementary to the driving servomotor, the experimental stand includes a belt drive transmission, a ball screw - bearings assembly and a driven element guided by ball rail system. This experimental research phase is part of the doctoral thesis of first author and was conducted in order to validate the mathematical models developed in the PhD thesis. Thus, experimental results presented in the paper have been used to validate first mathematical models for electric motor's preliminary selection and checking, (performed by determining the total reflected inertia of the mechanical system on motor shaft level) as well as the mathematical models for final selection and checking (by evaluating the servomotor's thermal energy dissipation, and servomotor's internal and external maximum operating temperature). Second, the experimental results have been used to validate the assisted simulation for structural and functional optimization of industrial robot's NC axes based on both servomotor and drive's thermal behavior analysis, performed in the thesis by means of a dedicated commercial software package.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1681 ◽  
Author(s):  
Bin Luo ◽  
Mingchao Chi ◽  
Qingtong Zhang ◽  
Mingfu Li ◽  
Changzhou Chen ◽  
...  

Technical lignin from pulping, an aromatic polymer with ~59% carbon content, was employed to develop novel lignin-based nano carbon thin film (LCF)-copper foil composite films for thermal management applications. A highly graphitized, nanoscale LCF (~80–100 nm in thickness) was successfully deposited on both sides of copper foil by spin coating followed by annealing treatment at 1000 °C in an argon atmosphere. The conditions of annealing significantly impacted the morphology and graphitization of LCF and the thermal conductivity of LCF-copper foil composite films. The LCF-modified copper foil exhibited an enhanced thermal conductivity of 478 W m−1 K−1 at 333 K, which was 43% higher than the copper foil counterpart. The enhanced thermal conductivity of the composite films compared with that of the copper foil was characterized by thermal infrared imaging. The thermal properties of the copper foil enhanced by LCF reveals its potential applications in the thermal management of advanced electronic products and highlights the potential high-value utility of lignin, the waste of pulping.


2000 ◽  
Vol 538 (1) ◽  
pp. 428-455 ◽  
Author(s):  
T. L. Hayward ◽  
M. S. Hanner ◽  
Z. Sekanina

2014 ◽  
Vol 5 ◽  
Author(s):  
Stephanos Ioannou ◽  
Paul Morris ◽  
Hayley Mercer ◽  
Marc Baker ◽  
Vittorio Gallese ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document