Experimental Research to Evaluate Thermal Behavior of a Brushless Driving Servomotor for Linear Motion NC Axis Experimental Stand

2015 ◽  
Vol 762 ◽  
pp. 55-60
Author(s):  
Georgia Cezara Avram ◽  
Florin Adrian Nicolescu ◽  
Radu Constantin Parpală ◽  
Constantin Dumitrascu

This paper presents the works carried out by the authors in the field of structural and functional optimization of industrial robot's numerically controlled (NC) axes. The study includes the results obtained in the research stage of the experimental measurements performed to evaluate the electrical servomotor's thermal behavior using a thermal (infrared) imaging camera. The analyzed servomotor is a brushless servomotor integrated in an experimental stand for linear motion NC axis experimental research, existing in the MMS department from EMTS faculty. Supplementary to the driving servomotor, the experimental stand includes a belt drive transmission, a ball screw - bearings assembly and a driven element guided by ball rail system. This experimental research phase is part of the doctoral thesis of first author and was conducted in order to validate the mathematical models developed in the PhD thesis. Thus, experimental results presented in the paper have been used to validate first mathematical models for electric motor's preliminary selection and checking, (performed by determining the total reflected inertia of the mechanical system on motor shaft level) as well as the mathematical models for final selection and checking (by evaluating the servomotor's thermal energy dissipation, and servomotor's internal and external maximum operating temperature). Second, the experimental results have been used to validate the assisted simulation for structural and functional optimization of industrial robot's NC axes based on both servomotor and drive's thermal behavior analysis, performed in the thesis by means of a dedicated commercial software package.

2015 ◽  
Vol 762 ◽  
pp. 21-26 ◽  
Author(s):  
Florin Adrian Nicolescu ◽  
Georgia Cezara Avram ◽  
Andrei Mario Ivan ◽  
Adrian Theodor Mantea

The paper presents works carried out by the authors in the field of NC axes’ structural and functional optimization. This paper includes the results obtained by using a MathCAD application (developed in the doctoral thesis of the second author) for the servomotor's thermal behavior computer assisted evaluation. The analyzed servomotor is included in the driving system of a linear motion NC axis experimental testing stand, (existing in MMS department from EMTS Faculty). The NC axis of the experimental stand integrates a FAGOR brushless servomotor, a 1:1 ratio belt drive intermediary transmission, a ball screw - bearings assembly (lead screw - ball nut - bearings) and a driven element guided through a ball rail system. The MathCAD application was developed in order to perform specific calculation for servomotor's thermal energy dissipation and maximum operating temperature evaluation, and allows to perform the assisted final check and optimum selection of the electrical driving servomotors based on these results. The paper presents, through some screenshots from running the MathCAD application, the computer assisted evaluation procedure and results of the brushless servomotor's thermal behavior analysis corresponding to analyzed NC axis (included in the experimental stand).


2015 ◽  
Vol 762 ◽  
pp. 61-66 ◽  
Author(s):  
Florin Adrian Nicolescu ◽  
Georgia Cezara Avram ◽  
Andrei Mario Ivan ◽  
Adrian Theodor Mantea

The paper presents the works performed by the authors in the field of structural and functional optimization numerically controlled (NC) axes. The study includes two computing applications developed by second author of the paper in a PhD thesis related on NC axes’ structural and functional optimization. The first computing application is used for calculating the total reflected inertia of a linear motion NC axis (total inertial loads' reducing on the driving motor's shaft level). The second computing application is used for both preliminary selection of the driving servomotor (by checking first the accomplishment of the kinematic criterion) and a secondary selection of the electric motor (by checking in a second stage the accomplishment of the static and dynamic criterion). By mean of both software applications optimal matching of servomotor driving system with available NC axis mechanical structure may be determined. The analyzed linear motion NC axis is part of an experimental stand (existing in the MMS department from EMTS faculty), that supplementary to the driving servomotor, includes a belt drive transmission, a ball screw - bearings assembly and a driven element guided by ball rail system.


2008 ◽  
pp. 347-359 ◽  
Author(s):  
David J. Schneider ◽  
James W. Vallance ◽  
Rick L. Wessels ◽  
Matthew Logan ◽  
Michael S. Ramsey

2019 ◽  
Author(s):  
Faina Satdarova

General analysis of the distribution of crystals orientation and dislocation density in the polycrystalline system is presented. Recovered information in diffraction of X-rays adopting is new to structure states of polycrystal. Shear phase transformations in metals — at the macroscopic and microscopic levels — become a clear process. Visualizing the advances is produced by program included in package delivered. Mathematical models developing, experimental design, optimal statistical estimation, simulation the system under study and evolution process on loading serves as instrumentation. To reduce advanced methods to research and studies problem-oriented software will promote when installed. Automation programs passed a testing in the National University of Science and Technology “MISIS” (The Russian Federation, Moscow). You score an advantage in theoretical and experimental research in the field of physics of metals.


Lubricants ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 26
Author(s):  
Nico Buchhorn ◽  
Michael Stottrop ◽  
Beate Bender

In tilting-pad journal bearings (TPJB) with a non-flooded lubrication concept, higher maximum pad temperatures occur than with a flooded bearing design due to the lower convective heat transfer at the pad edges. In this paper, we present an approach to influence the thermal behavior of a five-pad TPJB by active cooling. The aim of this research is to investigate the influence of additional oil supply grooves at the trailing edge of the two loaded pads on the maximum pad temperature of a large TPJB in non-flooded design. We carry out experimental and numerical investigations for a redesigned test bearing. Within the experimental analysis, the reduction in pad temperature is quantified. A simulation model of the bearing is synthesized with respect to the additional oil supply grooves. The simulation results are compared with the experimental data to derive heat transfer coefficients for the pad surfaces. The experimental results indicate a considerable reduction of the maximum pad temperatures. An overall lower temperature level is observed for the rear pad in circumferential direction (pad 4). The authors attribute this effect by a cooling oil carry-over from the previous pad (3). Within the model limits, a good agreement of the simulation and experimental results can be found.


2011 ◽  
Vol 11 (02) ◽  
pp. 215-236 ◽  
Author(s):  
MATTEO BROGGI ◽  
ADRIANO CALVI ◽  
GERHART I. SCHUËLLER

Cylindrical shells under axial compression are susceptible to buckling and hence require the development of enhanced underlying mathematical models in order to accurately predict the buckling load. Imperfections of the geometry of the cylinders may cause a drastic decrease of the buckling load and give rise to the need of advanced techniques in order to consider these imperfections in a buckling analysis. A deterministic buckling analysis is based on the use of the so-called knockdown factors, which specifies the reduction of the buckling load of the perfect shell in order to account for the inherent uncertainties in the geometry. In this paper, it is shown that these knockdown factors are overly conservative and that the fields of probability and statistics provide a mathematical vehicle for realistically modeling the imperfections. Furthermore, the influence of different types of imperfection on the buckling load are examined and validated with experimental results.


Author(s):  
A.S. FETISOV ◽  
V.O. TYURIN

The article presents the classification of magnetorheological devices. The classification of bearings of rotor machines is given. An experimental stand is described that includes a magnetorheological journal bearing. The information–measuring system of the experimental stand is presented. The results of experimental study is presented.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1681 ◽  
Author(s):  
Bin Luo ◽  
Mingchao Chi ◽  
Qingtong Zhang ◽  
Mingfu Li ◽  
Changzhou Chen ◽  
...  

Technical lignin from pulping, an aromatic polymer with ~59% carbon content, was employed to develop novel lignin-based nano carbon thin film (LCF)-copper foil composite films for thermal management applications. A highly graphitized, nanoscale LCF (~80–100 nm in thickness) was successfully deposited on both sides of copper foil by spin coating followed by annealing treatment at 1000 °C in an argon atmosphere. The conditions of annealing significantly impacted the morphology and graphitization of LCF and the thermal conductivity of LCF-copper foil composite films. The LCF-modified copper foil exhibited an enhanced thermal conductivity of 478 W m−1 K−1 at 333 K, which was 43% higher than the copper foil counterpart. The enhanced thermal conductivity of the composite films compared with that of the copper foil was characterized by thermal infrared imaging. The thermal properties of the copper foil enhanced by LCF reveals its potential applications in the thermal management of advanced electronic products and highlights the potential high-value utility of lignin, the waste of pulping.


Author(s):  
Minoru Chino ◽  
Kenji Takizawa ◽  
Takashi Yabe

This paper provides the experimental results on skimmer and gives some detailed information useful for benchmark test of computer codes that are now able to simulate the fluid-structure interaction. For this purpose, we specially designed the injection system that imposes reproducible rotational speed and injection speed on the skipper. The effect of rotation is discussed by changing rotation speed in a wide range.


Sign in / Sign up

Export Citation Format

Share Document