scholarly journals The airborne mass spectrometer AIMS – Part 2: Measurements of trace gases with stratospheric or tropospheric origin in the UTLS

2015 ◽  
Vol 8 (12) ◽  
pp. 13567-13607 ◽  
Author(s):  
T. Jurkat ◽  
S. Kaufmann ◽  
C. Voigt ◽  
D. Schäuble ◽  
P. Jeßberger ◽  
...  

Abstract. Understanding the role of climate-sensitive trace gas variabilities in the upper troposphere and lower stratosphere region (UTLS) and their impact on its radiative budget requires accurate measurements. The composition of the UTLS is governed by transport and chemistry of stratospheric and tropospheric constituents, such as chlorine, nitrogen oxide and sulphur components. The Airborne chemical Ionization Mass Spectrometer AIMS has been developed to accurately measure a set of these constituents on aircraft by means of chemical ionization. Here we present a setup using chemical ionization with SF5− reagent ions for the simultaneous measurement of trace gas concentrations in the pptv to ppmv (10−12 to 10−6 mol mol−1) range of HCl, HNO3 and SO2 with in-flight and online calibration called AIMS-TG. Part 1 of this paper (Kaufmann et al., 2015) reports on the UTLS water vapour measurements with the AIMS-H2O configuration. The instrument can be flexibly switched between two configurations depending on the scientific objective of the mission. For AIMS-TG, a custom-made gas discharge ion source has been developed generating a characteristic ionization scheme. HNO3 and HCl are routinely calibrated in-flight using permeation devices, SO2 is permanently calibrated during flight adding an isotopically labelled 34SO2 standard. In addition, we report on trace gas measurements of HONO which is sensitive to the reaction with SF5−. The detection limit for the various trace gases is in the low ten pptv range at a 1 s time resolution with an overall uncertainty of the measurement in the order of 20 %. AIMS has been integrated and successfully operated on the DLR research aircraft Falcon and HALO. Exemplarily, measurements conducted during the TACTS/ESMVal mission with HALO in 2012 are presented, focusing on a classification of tropospheric and stratospheric influences in the UTLS region. Comparison of AIMS measurements with other measurement techniques allow to draw a comprehensive picture of the sulphur, chlorine and reactive nitrogen oxide budget in the UTLS. The combination of the trace gases measured with AIMS exhibit the potential to gain a better understanding of the trace gas origin and variability at and near the tropopause.

2016 ◽  
Vol 9 (4) ◽  
pp. 1907-1923 ◽  
Author(s):  
Tina Jurkat ◽  
Stefan Kaufmann ◽  
Christiane Voigt ◽  
Dominik Schäuble ◽  
Philipp Jeßberger ◽  
...  

Abstract. Understanding the role of climate-sensitive trace gas variabilities in the upper troposphere and lower stratosphere region (UTLS) and their impact on its radiative budget requires accurate measurements. The composition of the UTLS is governed by transport and chemistry of stratospheric and tropospheric constituents, such as chlorine, nitrogen oxide and sulfur compounds. The Atmospheric chemical Ionization Mass Spectrometer AIMS has been developed to accurately measure a set of these constituents on aircraft by means of chemical ionization. Here we present a setup using SF5− reagent ions for the simultaneous measurement of trace gas concentrations of HCl, HNO3 and SO2 in the  pptv to ppmv (10−12 to 10−6 mol mol−1) range with in-flight and online calibration called AIMS-TG (Atmospheric chemical Ionization Mass Spectrometer for measurements of trace gases). Part 1 of this paper (Kaufmann et al., 2016) reports on the UTLS water vapor measurements with the AIMS-H2O configuration. The instrument can be flexibly switched between two configurations depending on the scientific objective of the mission. For AIMS-TG, a custom-made gas discharge ion source has been developed for generation of reagent ions that selectively react with HCl, HNO3, SO2 and HONO. HNO3 and HCl are routinely calibrated in-flight using permeation devices; SO2 is continuously calibrated during flight adding an isotopically labeled 34SO2 standard. In addition, we report on trace gas measurements of HONO, which is sensitive to the reaction with SF5−. The detection limit for the various trace gases is in the low 10 pptv range at a 1 s time resolution with an overall uncertainty of the measurement of the order of 20 %. AIMS has been integrated and successfully operated on the DLR research aircraft Falcon and HALO (High Altitude LOng range research aircraft). As an example, measurements conducted during the TACTS/ESMVal (Transport and Composition of the LMS/UT and Earth System Model Validation) mission with HALO in 2012 are presented, focusing on a classification of tropospheric and stratospheric influences in the UTLS region. The combination of AIMS measurements with other measurement techniques yields a comprehensive picture of the sulfur, chlorine and reactive nitrogen oxide budget in the UTLS. The different trace gases measured with AIMS exhibit the potential to gain a better understanding of the trace gas origin and variability at and near the tropopause.


2021 ◽  
Author(s):  
Martin Breitenlechner ◽  
Gordon A. Novak ◽  
J. Andrew Neuman ◽  
Andrew W. Rollins ◽  
Patrick R. Veres

Abstract. We present the development of a Chemical Ionization Mass Spectrometer (CIMS) ion source specifically designed for in situ measurements of trace gases in the upper troposphere and lower stratosphere. The ion source utilizes a commercially available photoionization krypton lamp, primarily emitting photons in the vacuum ultraviolet (VUV) region at wavelengths of 124 and 117 nm (corresponding to energies of 10 and 10.6 eV, respectively), coupled to a commercially available Vocus Proton Transfer Reaction Mass Spectrometer. The VUV ion source can produce both negative and positive reagent ions, however, here we primarily focus on generating iodide anions (I−). The instrument’s drift tube (also known as ion molecule reactor) operates at pressures between 2 and 10 mbar, which facilitates ambient sampling at atmospheric pressures as low as 50 mbar. The low operating pressure reduces secondary ion chemistry that can occur in iodide CIMS. It also allows the addition of water vapor to the drift tube to exceed typical ambient humidity by more than one order of magnitude, significantly reducing ambient humidity dependence of sensitivities. An additional benefit of this ion source and drift tube is a 10 to 100-fold reduction in nitrogen consumed during operation relative to standard I− ion sources, resulting in significantly reduced instrument weight and operational costs. In iodide mode, sensitivities of 76 cps/ppt for nitric acid, 35 cps/ppt for Br2, and 8.9 cps/ppt for Cl2 were achieved. Lastly, we demonstrate that this ion source can generate benzene (C6H6+) and ammonium (NH4+) reagent ions to expand the number of detected atmospheric trace gases.


2020 ◽  
Author(s):  
Chenyang Bi ◽  
Jordan E. Krechmer ◽  
Graham O. Frazier ◽  
Wen Xu ◽  
Andrew T. Lambe ◽  
...  

Abstract. Atmospheric oxidation products of volatile organic compounds consist of thousands of unique chemicals that have distinctly different physical and chemical properties depending on their detailed structures and functional groups. Measurement techniques that can achieve molecular characterizations with details down to functional groups (i.e., isomer-resolved resolution) are consequently necessary to provide understandings of differences of fate and transport within isomers produced in the oxidation process. We demonstrate a new instrument coupling the thermal desorption aerosol gas chromatograph (TAG), which enables the separation of isomers, with the high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS), which has the capability of classifying unknown compounds by their molecular formulas, and the flame ion detector (FID), which provide a near-universal response to organic compounds. The TAG-CIMS/FID is used to provide isomer-resolved measurements of samples from liquid standard injections and particle-phase organics generated in oxidation flow reactors. By coupling a TAG to a CIMS, the CIMS is enhanced with an additional dimension of information (resolution of individual molecules) at the cost of time resolution (i.e., one sample per hour instead of per minute). We found that isomers are prevalent in sample matrix with an average number of three to five isomers per formula depending on the precursors in the oxidation experiments. Additionally, a multi-reagent ionization mode is investigated in which both zero air and iodide are introduced as reagent ions, to examine the feasibility of extending the use of an individual CIMS to a broader range of analytes with still selective reagent ions. While this approach reduces iodide-adduct ions by a factor of two, [M−H]− and [M+O2]− ions produced from lower-polarity compounds increase by a factor of five to ten, improving their detection by CIMS. The method expands the range of detected chemical species by using two chemical ionization reagents simultaneously, enabled by the pre-separation of analyte molecules before ionization.


2018 ◽  
Author(s):  
Sascha R. Albrecht ◽  
Anna Novelli ◽  
Andreas Hofzumahaus ◽  
Sungah Kang ◽  
Yare Baker ◽  
...  

Abstract. Hydroxyl and hydroperoxy radicals are key species for the understanding of atmospheric oxidation processes. Their measurement is challenging due to their high reactivity, therefore very sensitive detection methods are needed. Within this study, the measurement of hydroperoxy radicals (HO2) using chemical ionization combined with an high resolution time of flight mass spectrometer (Aerodyne Research Inc.) employing bromide as primary ion is presented. The 1σ limit of detection of 4.5 × 107 molecules cm−3 for a 60 s measurement is below typical HO2 concentrations found in the atmosphere. The detection sensitivity of the instrument is affected by the presence of water vapor. Therefore, a water vapor dependent calibration factor that decreases approximately by a factor of 2 if the water vapor mixing ratio increases from 0.1 to 1.0 % needs to be applied. An instrumental background most likely generated by the ion source that is equivalent to a HO2 concentration of 1.5 ± 0.2 × 108 molecules cm−3 is subtracted to derive atmospheric HO2 concentrations. This background can be determined by overflowing the inlet with zero air. Several experiments were performed in the atmospheric simulation chamber SAPHIR at the Forschungszentrum Jülich to test the instrument performance by comparison to the well-established laser-induced fluorescence (LIF) technique for measurements of HO2. A high linear correlation coefficient of R2 = 0.87 is achieved. The slope of the linear regression of 1.07 demonstrates the good absolute agreement of both measurements. Chemical conditions during 15 experiments allowed testing the instrument’s behavior in the presence of atmospheric concentrations of H2O, NOx and O3. No significant interferences from these species were observed. All these facts are demonstrating a reliable measurement of HO2 by the chemical ionization mass spectrometer presented.


2021 ◽  
Author(s):  
Xiaoxiao Li ◽  
Yuyang Li ◽  
Michael Lawler ◽  
Jiming Hao ◽  
James Smith ◽  
...  

<p>Ultrafine particles (UFPs) dominate the particle number population in the urban atmosphere and revealing their chemical composition is important. The thermal desorption chemical ionization mass spectrometer (TDCIMS) can semi-continuously measure UFP composition at the molecular level. We modified a TDCIMS and deployed it in urban Beijing. Radioactive materials in the TDCIMS for aerosol charging and chemical ionization were replaced by soft X-ray ionizers so that it can be operated in countries with tight regulations on radioactive materials. Protonated N-methyl-2-pyrrolidone ions were used as the positive reagent ion, which selectively detects ammonia and low-molecular weight-aliphatic amines and amides vaporized from the particle phase. With superoxide as the negative reagent ion, a wide range of inorganic and organic compounds were observed, including nitrate, sulfate, aliphatic acids with carbon numbers up to 18, and highly oxygenated CHO, CHON, and CHOS compounds. The latter two can be attributed to parent ions or the decomposition products of organonitrates and organosulfates/organosulfonates, respectively. Components from both primary emissions and secondary formation of UFPs were identified. Compared to the UFPs measured at forest and marine sites, those in urban Beijing contain more nitrogen-containing and sulfur-containing compounds. These observations illustrate unique features of the UFPs in this polluted urban environment and provide insights into their origins.</p>


2019 ◽  
Vol 12 (3) ◽  
pp. 1861-1870 ◽  
Author(s):  
Alexander Zaytsev ◽  
Martin Breitenlechner ◽  
Abigail R. Koss ◽  
Christopher Y. Lim ◽  
James C. Rowe ◽  
...  

Abstract. Chemical ionization mass spectrometry (CIMS) instruments routinely detect hundreds of oxidized organic compounds in the atmosphere. A major limitation of these instruments is the uncertainty in their sensitivity to many of the detected ions. We describe the development of a new high-resolution time-of-flight chemical ionization mass spectrometer that operates in one of two ionization modes: using either ammonium ion ligand-switching reactions such as for NH4+ CIMS or proton transfer reactions such as for proton-transfer-reaction mass spectrometer (PTR-MS). Switching between the modes can be done within 2 min. The NH4+ CIMS mode of the new instrument has sensitivities of up to 67 000 dcps ppbv−1 (duty-cycle-corrected ion counts per second per part per billion by volume) and detection limits between 1 and 60 pptv at 2σ for a 1 s integration time for numerous oxygenated volatile organic compounds. We present a mass spectrometric voltage scanning procedure based on collision-induced dissociation that allows us to determine the stability of ammonium-organic ions detected by the NH4+ CIMS instrument. Using this procedure, we can effectively constrain the sensitivity of the ammonia chemical ionization mass spectrometer to a wide range of detected oxidized volatile organic compounds for which no calibration standards exist. We demonstrate the application of this procedure by quantifying the composition of secondary organic aerosols in a series of laboratory experiments.


1975 ◽  
Vol 58 (4) ◽  
pp. 734-742 ◽  
Author(s):  
Richard Saferstein ◽  
Jew-Ming Chao ◽  
John J Manura

Abstract The detection of explosive residues in debris is difficult because of the thermal instability of many explosives along with the high sensitivity requirements of the analyses. The isobutane chemical ionization (CI) mass spectra of common civilian and military explosives were obtained under different instrumental parameters. The intent of the study was to determine the feasibility of applying CI to residue detection. The CI spectra of the explosives 1,3,5-trinitro-1,3,5-triazocydohexane, 1,3,5,7-tetraazocyclooctane, and pentaerythritol tetranitrate were shown to be particularly sensitive to the conditions of source temperature and reagent gas pressure. These parameters were adjusted to yield the least complex CI spectra for the explosives studied. The simplicity of the CI spectra obtained makes it a feasible technique for detecting explosive residues in the presence of extraneous materials found in the acetone extracts of debris material. Placement of the extract into the direct probe of the CI mass spectrometer eliminates the need for prior chromatographic treatment of the extract and would optimize the high sensitivity of the CI technique.


Sign in / Sign up

Export Citation Format

Share Document