scholarly journals Effective resolution concepts for lidar observations

2015 ◽  
Vol 8 (5) ◽  
pp. 5363-5424
Author(s):  
M. Iarlori ◽  
F. Madonna ◽  
V. Rizi ◽  
T. Trickl ◽  
A. Amodeo

Abstract. Since its first establishment in 2000, EARLINET (European Aerosol Research Lidar NETwork) has been devoted to providing, through its database, exclusively quantitative aerosol properties, such as aerosol backscatter and aerosol extinction coefficients, the latter only for stations able to retrieve it independently (from Raman or High Spectral Resolution Lidars). As these coefficients are provided in terms of vertical profiles, EARLINET database must also include the details on the range resolution of the submitted data. In fact, the algorithms used in the lidar data analysis often alter the spectral content of the data, mainly working as low pass filters with the purpose of noise damping. Low pass filters are mathematically described by the Digital Signal Processing (DSP) theory as a convolution sum. As a consequence, this implies that each filter's output, at a given range (or time) in our case, will be the result of a linear combination of several lidar input data relative to different ranges (times) before and after the given range (time): a first hint of loss of resolution of the output signal. The application of filtering processes will also always distort the underlying true profile whose relevant features, like aerosol layers, will then be affected both in magnitude and in spatial extension. Thus, both the removal of noise and the spatial distortion of the true profile produce a reduction of the range resolution. This paper provides the determination of the effective resolution (ERes) of the vertical profiles of aerosol properties retrieved starting from lidar data. Large attention has been addressed to provide an assessment of the impact of low-pass filtering on the effective range resolution in the retrieval procedure.

2015 ◽  
Vol 8 (12) ◽  
pp. 5157-5176 ◽  
Author(s):  
M. Iarlori ◽  
F. Madonna ◽  
V. Rizi ◽  
T. Trickl ◽  
A. Amodeo

Abstract. Since its establishment in 2000, EARLINET (European Aerosol Research Lidar NETwork) has provided, through its database, quantitative aerosol properties, such as aerosol backscatter and aerosol extinction coefficients, the latter only for stations able to retrieve it independently (from Raman or high-spectral-resolution lidars). These coefficients are stored in terms of vertical profiles, and the EARLINET database also includes the details of the range resolution of the vertical profiles. In fact, the algorithms used in the lidar data analysis often alter the spectral content of the data, mainly acting as low-pass filters to reduce the high-frequency noise. Data filtering is described by the digital signal processing (DSP) theory as a convolution sum: each filtered signal output at a given range is the result of a linear combination of several signal input data samples (relative to different ranges from the lidar receiver), and this could be seen as a loss of range resolution of the output signal. Low-pass filtering always introduces distortions in the lidar profile shape. Thus, both the removal of high frequency, i.e., the removal of details up to a certain spatial extension, and the spatial distortion produce a reduction of the range resolution. This paper discusses the determination of the effective resolution (ERes) of the vertical profiles of aerosol properties retrieved from lidar data. Large attention has been dedicated to providing an assessment of the impact of low-pass filtering on the effective range resolution in the retrieval procedure.


2021 ◽  
Vol 34 (2) ◽  
pp. 291-305
Author(s):  
Biljana Stosic

The aim of this paper is to construct non-recursive filters, extensively used type of digital filters in digital signal processing applications, based on Chebyshev orthogonal polynomials. The paper proposes the use of the fourth-kind Chebyshev polynomials as functions in generating new filters. In this kind, low-pass filters with linear phase responses are obtained. Comprenhansive study of the frequency response characteristics of the generated filter functions is presented. The effects of coefficient quantization as one type of quantization that influences a filter characteristic are investigated here also. The quantized-coefficient errors are considered based on the number of bits and the implementation algorithms.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 278 ◽  
Author(s):  
Niya Dong ◽  
Jorge Prozzi ◽  
Fujian Ni

Tire–pavement interactions, like friction and rolling resistance, are significantly influenced by pavement macro-texture and micro-texture. Accurate texture measurement at the micro-texture level is vital to achieve the desired level of safety, comfort, and sustainability of the pavement. However, the existence of dropouts and spikes in the collected data is still inevitable based on current laser devices, which leads to erroneous texture characterization. This study utilized an advanced laser sensor to measure three-dimensional (3D) pavement texture at the micro-level at a given speed. Using a proposed interpolation method, the dropout areas in the raw measurements were filled up. Butterworth’s high-pass and low-pass filters were applied to separate two texture components from the profile. Based on a statistical analysis for the micro-texture amplitude, an appropriate threshold was determined in order to identify the spikes. A three-step-spike-removal method was proposed and found to be effective in clearing the spikes. The 3D pavement profiles were finally reconstructed without dropouts and spikes. Mean profile depth (MPD) was calculated with different baselines. It was found that the presence of spikes leads to a greater MPD value and the MPD is sensitive to the baseline length. A shorter baseline is recommended to mitigate the impact of spikes on the accuracy of the MPD.


2019 ◽  
Vol 11 (16) ◽  
pp. 1926 ◽  
Author(s):  
John B. Lindsay ◽  
Anthony Francioni ◽  
Jaclyn M. H. Cockburn

Fine-resolution Light Detection and Ranging (LiDAR) data often exhibit excessive surface roughness that can hinder the characterization of topographic shape and the modeling of near-surface flow processes. Digital elevation model (DEM) smoothing methods, commonly low-pass filters, are sometimes applied to LiDAR data to subdue the roughness. These techniques can negatively impact the representation of topographic features, most notably drainage features, such as headwater streams. This paper presents the feature-preserving DEM smoothing (FPDEMS) method, which modifies surface normals to smooth the topographic surface in a similar manner to approaches that were originally designed for de-noising three-dimensional (3D) meshes. The FPDEMS method has been optimized for application with raster DEM data. The method was compared with several low-pass filters while using a 0.5-m resolution LiDAR DEM of an agricultural area in southwestern Ontario, Canada. The findings demonstrated that the technique was better at removing roughness, when compared with mean, median, and Gaussian filters, while also preserving sharp breaks-in-slope and retaining the topographic complexity at broader scales. Optimal smoothing occurred with kernel sizes of 11–21 grid cells, threshold angles of 10°–20°, and 3–15 elevation-update iterations. These parameter settings allowed for the effective reduction in roughness and DEM noise and the retention of terrace scarps, channel banks, gullies, and headwater streams.


2021 ◽  
Vol 21 (14) ◽  
pp. 11079-11098
Author(s):  
Yang Wang ◽  
Guangjie Zheng ◽  
Michael P. Jensen ◽  
Daniel A. Knopf ◽  
Alexander Laskin ◽  
...  

Abstract. Because of their extensive coverage, marine low clouds greatly impact the global climate. Presently, the response of marine low clouds to the changes in atmospheric aerosols remains a major source of uncertainty in climate simulations. One key contribution to this large uncertainty derives from the poor understanding of the properties and processes of marine aerosols under natural conditions and the perturbation by anthropogenic emissions. The eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary layer (MBL) clouds, where cloud albedo and precipitation are highly susceptible to perturbations in aerosol properties. Here we examine the key processes that drive the cloud condensation nuclei (CCN) population in the MBL using comprehensive characterizations of aerosol and trace gas vertical profiles during the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) field campaign. During ACE-ENA, a total of 39 research flights were conducted in the Azores: 20 during summer 2017 and 19 during winter 2018. During summer, long-range-transported aerosol layers were periodically observed in the lower free troposphere (FT), leading to elevated FT CCN concentrations (NCCN). Both biomass burning and pollution from North America contribute to submicron aerosol mass in these layers, with pollution likely the dominant contributor. In contrast, long-range transported continental emissions have a much weaker influence on the aerosol properties in the ENA during the winter season. While the entrainment of FT air is a major source of particle number in the MBL for both seasons, on average it does not serve as a direct source of CCN in the MBL because the average FT NCCN is the same or even lower than that in the MBL. The particle number flux due to FT entrainment is dominated by pre-CCN (particles that are too small to form cloud droplets under typical conditions, i.e., particles with sizes below the Hoppel minimum) due to the elevated Npre-CCN in the lower FT. Once these pre-CCN are entrained into the MBL, they can grow and reach CCN size range through condensational growth, representing an indirect and major source of MBL CCN in the ENA. The impact of synoptic conditions on the aerosol properties is examined. Under pre-front and post-front conditions, shallow convective activity often leads to a deep and decoupled boundary layer. Coalescence scavenging and evaporation of drizzle below clouds lead to reduced NCCN and larger accumulation-mode particle sizes in the upper cloud-containing decoupled layer, indicating that surface measurements overestimate the NCCN relevant to the formation of MBL clouds under decoupled conditions.


2015 ◽  
Vol E98.C (2) ◽  
pp. 156-161
Author(s):  
Hidenori YUKAWA ◽  
Koji YOSHIDA ◽  
Tomohiro MIZUNO ◽  
Tetsu OWADA ◽  
Moriyasu MIYAZAKI
Keyword(s):  
Ka Band ◽  
Low Pass ◽  

2007 ◽  
Vol 30 (4) ◽  
pp. 51 ◽  
Author(s):  
A. Baranchuk ◽  
G. Dagnone ◽  
P. Fowler ◽  
M. N. Harrison ◽  
L. Lisnevskaia ◽  
...  

Electrocardiography (ECG) interpretation is an essential skill for physicians as well as for many other health care professionals. Continuing education is necessary to maintain these skills. The process of teaching and learning ECG interpretation is complex and involves both deductive mechanisms and recognition of patterns for different clinical situations (“pattern recognition”). The successful methodologies of interactive sessions and real time problem based learning have never been evaluated with a long distance education model. To evaluate the efficacy of broadcasting ECG rounds to different hospitals in the Southeastern Ontario region; to perform qualitative research to determine the impact of this methodology in developing and maintaining skills in ECG interpretation. ECG rounds are held weekly at Kingston General Hospital and will be transmitted live to Napanee, Belleville, Oshawa, Peterborough and Brockville. The teaching methodology is based on real ECG cases. The audience is invited to analyze the ECG case and the coordinator will introduce comments to guide the case through the proper algorithm. Final interpretation will be achieved emphasizing the deductive process and the relevance of each case. An evaluation will be filled out by each participant at the end of each session. Videoconferencing works through a vast array of internet LANs, WANs, ISDN phone lines, routers, switches, firewalls and Codecs (Coder/Decoder) and bridges. A videoconference Codec takes the analog audio and video signal codes and compresses it into a digital signal and transmits that digital signal to another Codec where the signal is decompressed and retranslated back into analog video and audio. This compression and decompression allows large amounts of data to be transferred across a network at close to real time (384 kbps with 30 frames of video per second). Videoconferencing communication works on voice activation so whichever site is speaking has the floor and is seen by all the participating sites. A continuous presence mode allows each site to have the same visual and audio involvement as the host site. A bridged multipoint can connect between 8 and 12 sites simultaneously. This innovative methodology for teaching ECG will facilitate access to developing and maintaining skills in ECG interpretation for a large number of health care providers. Bertsch TF, Callas PW, Rubin A. Effectiveness of lectures attended via interactive video conferencing versus in-person in preparing third-year internal medicine clerkship students for clinical practice examinations. Teach Learn Med 2007; 19(1):4-8. Yellowlees PM, Hogarth M, Hilty DM. The importance of distributed broadband networks to academic biomedical research and education programs. Acad Psychaitry 2006;30:451-455


2011 ◽  
Vol 5 (2) ◽  
pp. 155-162
Author(s):  
Jose de Jesus Rubio ◽  
Diana M. Vazquez ◽  
Jaime Pacheco ◽  
Vicente Garcia

2015 ◽  
Vol 8 (3) ◽  
pp. 1593-1604 ◽  
Author(s):  
C. Bassani ◽  
C. Manzo ◽  
F. Braga ◽  
M. Bresciani ◽  
C. Giardino ◽  
...  

Abstract. Hyperspectral imaging provides quantitative remote sensing of ocean colour by the high spectral resolution of the water features. The HICO™ (Hyperspectral Imager for the Coastal Ocean) is suitable for coastal studies and monitoring. The accurate retrieval of hyperspectral water-leaving reflectance from HICO™ data is still a challenge. The aim of this work is to retrieve the water-leaving reflectance from HICO™ data with a physically based algorithm, using the local microphysical properties of the aerosol in order to overcome the limitations of the standard aerosol types commonly used in atmospheric correction processing. The water-leaving reflectance was obtained using the HICO@CRI (HICO ATmospherically Corrected Reflectance Imagery) atmospheric correction algorithm by adapting the vector version of the Second Simulation of a Satellite Signal in the Solar Spectrum (6SV) radiative transfer code. The HICO@CRI algorithm was applied on to six HICO™ images acquired in the northern Mediterranean basin, using the microphysical properties measured by the Acqua Alta Oceanographic Tower (AAOT) AERONET site. The HICO@CRI results obtained with AERONET products were validated with in situ measurements showing an accuracy expressed by r2 = 0.98. Additional runs of HICO@CRI on the six images were performed using maritime, continental and urban standard aerosol types to perform the accuracy assessment when standard aerosol types implemented in 6SV are used. The results highlight that the microphysical properties of the aerosol improve the accuracy of the atmospheric correction compared to standard aerosol types. The normalized root mean square (NRMSE) and the similar spectral value (SSV) of the water-leaving reflectance show reduced accuracy in atmospheric correction results when there is an increase in aerosol loading. This is mainly when the standard aerosol type used is characterized with different optical properties compared to the local aerosol. The results suggest that if a water quality analysis is needed the microphysical properties of the aerosol need to be taken into consideration in the atmospheric correction of hyperspectral data over coastal environments, because aerosols influence the accuracy of the retrieved water-leaving reflectance.


Sign in / Sign up

Export Citation Format

Share Document