scholarly journals The MaCWAVE program to study gravity wave influences on the polar mesosphere

2006 ◽  
Vol 24 (4) ◽  
pp. 1159-1173 ◽  
Author(s):  
R. A. Goldberg ◽  
D. C. Fritts ◽  
F. J. Schmidlin ◽  
B. P. Williams ◽  
C. L. Croskey ◽  
...  

Abstract. MaCWAVE (Mountain and Convective Waves Ascending VErtically) was a highly coordinated rocket, ground-based, and satellite program designed to address gravity wave forcing of the mesosphere and lower thermosphere (MLT). The MaCWAVE program was conducted at the Norwegian Andøya Rocket Range (ARR, 69.3° N) in July 2002, and continued at the Swedish Rocket Range (Esrange, 67.9° N) during January 2003. Correlative instrumentation included the ALOMAR MF and MST radars and RMR and Na lidars, Esrange MST and meteor radars and RMR lidar, radiosondes, and TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics) satellite measurements of thermal structures. The data have been used to define both the mean fields and the wave field structures and turbulence generation leading to forcing of the large-scale flow. In summer, launch sequences coupled with ground-based measurements at ARR addressed the forcing of the summer mesopause environment by anticipated convective and shear generated gravity waves. These motions were measured with two 12-h rocket sequences, each involving one Terrier-Orion payload accompanied by a mix of MET rockets, all at ARR in Norway. The MET rockets were used to define the temperature and wind structure of the stratosphere and mesosphere. The Terrier-Orions were designed to measure small-scale plasma fluctuations and turbulence that might be induced by wave breaking in the mesosphere. For the summer series, three European MIDAS (Middle Atmosphere Dynamics and Structure) rockets were also launched from ARR in coordination with the MaCWAVE payloads. These were designed to measure plasma and neutral turbulence within the MLT. The summer program exhibited a number of indications of significant departures of the mean wind and temperature structures from ``normal" polar summer conditions, including an unusually warm mesopause and a slowing of the formation of polar mesospheric summer echoes (PMSE) and noctilucent clouds (NLC). This was suggested to be due to enhanced planetary wave activity in the Southern Hemisphere and a surprising degree of inter-hemispheric coupling. The winter program was designed to study the upward propagation and penetration of mountain waves from northern Scandinavia into the MLT at a site favored for such penetration. As the major response was expected to be downstream (east) of Norway, these motions were measured with similar rocket sequences to those used in the summer campaign, but this time at Esrange. However, a major polar stratospheric warming just prior to the rocket launch window induced small or reversed stratospheric zonal winds, which prevented mountain wave penetration into the mesosphere. Instead, mountain waves encountered critical levels at lower altitudes and the observed wave structure in the mesosphere originated from other sources. For example, a large-amplitude semidiurnal tide was observed in the mesosphere on 28 and 29 January, and appears to have contributed to significant instability and small-scale structures at higher altitudes. The resulting energy deposition was found to be competitive with summertime values. Hence, our MaCWAVE measurements as a whole are the first to characterize influences in the MLT region of planetary wave activity and related stratospheric warmings during both winter and summer.

2020 ◽  
Vol 13 (9) ◽  
pp. 5117-5128
Author(s):  
René Sedlak ◽  
Alexandra Zuhr ◽  
Carsten Schmidt ◽  
Sabine Wüst ◽  
Michael Bittner ◽  
...  

Abstract. The period range between 6 and 480 min is known to represent the major part of the gravity wave spectrum driving mesospheric dynamics. We present a method using wavelet analysis to calculate gravity wave activity with a high period resolution and apply it to temperature data acquired with the OH* airglow spectrometers called GRIPS (GRound-based Infrared P-branch Spectrometer) within the framework of the NDMC (Network for the Detection of Mesospheric Change; https://ndmc.dlr.de, last access: 22 September 2020). We analyse data measured at the NDMC sites Abastumani in Georgia (ABA; 41.75∘ N, 42.82∘ E), ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research) in Norway (ALR; 69.28∘ N, 16.01∘ E), Neumayer Station III in the Antarctic (NEU; 70.67∘ S, 8.27∘ W), Observatoire de Haute-Provence in France (OHP; 43.93∘ N, 5.71∘ E), Oberpfaffenhofen in Germany (OPN; 48.09∘ N, 11.28∘ E), Sonnblick in Austria (SBO; 47.05∘ N, 12.95∘ E), Tel Aviv in Israel (TAV; 32.11∘ N, 34.80∘ E), and the Environmental Research Station Schneefernerhaus on top of Zugspitze mountain in Germany (UFS; 47.42∘ N, 10.98∘ E). All eight instruments are identical in construction and deliver consistent and comparable data sets. For periods shorter than 60 min, gravity wave activity is found to be relatively low and hardly shows any seasonal variability on the timescale of months. We find a semi-annual cycle with maxima during winter and summer for gravity waves with periods longer than 60 min, which gradually develops into an annual cycle with a winter maximum for longer periods. The transition from a semi-annual pattern to a primarily annual pattern starts around a gravity wave period of 200 min. Although there are indications of enhanced gravity wave sources above mountainous terrain, the overall pattern of gravity wave activity does not differ significantly for the abovementioned observation sites. Thus, large-scale mechanisms such as stratospheric wind filtering seem to dominate the evolution of mesospheric gravity wave activity.


2016 ◽  
Author(s):  
Manfred Ern ◽  
Quang Thai Trinh ◽  
Martin Kaufmann ◽  
Isabell Krisch ◽  
Peter Preusse ◽  
...  

Abstract. Sudden stratospheric warmings (SSWs) are circulation anomalies in the polar region during winter. They mostly occur in the Northern Hemisphere and affect also surface weather and climate. Both planetary waves and gravity waves contribute to the onset and evolution of SSWs. While the role of planetary waves for SSW evolution has been recognized, the effect of gravity waves is still not fully understood, and has not been comprehensively analyzed based on global observations. In particular, information on the gravity wave driving of the background winds during SSWs is still missing. We investigate the boreal winters 2001/2002 until 2013/2014. Absolute gravity wave momentum fluxes and gravity wave dissipation (potential drag) are estimated from temperature observations of the satellite instruments HIRDLS and SABER. In agreement with previous work, we find that sometimes gravity wave activity is enhanced before the central date of major SSWs, particularly during vortex-split events. Often, SSWs are associated with polar-night jet oscillation (PJO) events. For these events, we find that gravity wave activity is strongly suppressed when winds reverse from eastward to westward (usually after the central date of a major SSW). In addition, gravity wave potential drag at the bottom of the newly forming eastward directed jet is remarkably weak, while considerable potential drag at the top of the jet likely contributes to the downward propagation of both the jet and the new elevated stratopause. During PJO events, we also find some indication for poleward propagation of gravity waves. Another striking finding is that obviously localized gravity wave sources, likely mountain waves and jet-generated gravity waves, play an important role during the evolution of SSWs and potentially contribute to the triggering of SSWs by preconditioning the shape of the polar vortex. The distribution of these hot spots is highly variable and strongly depends on the zonal and meridional shape of the background wind field, indicating that a pure zonal average view sometimes is a too strong simplification for the strongly perturbed conditions during the evolution of SSWs.


2021 ◽  
Author(s):  
Markus Geldenhuys ◽  
Peter Preusse ◽  
Isabell Krisch ◽  
Christoph Zülicke ◽  
Jörn Ungermann ◽  
...  

Abstract. To better understand the impact of gravity waves (GWs) on the middle atmosphere in the current and future climate, it is essential to understand their excitation mechanisms and to quantify their basic properties. Here a new process for GW excitation by orography-jet interaction is discussed. In a case study, we identify the source of a GW observed over Greenland on 10 March 2016 during the POLSTRACC (POLar STRAtosphere in a Changing Climate) aircraft campaign. Measurements were taken with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) instrument deployed on the High Altitude Long Range (HALO) German research aircraft. The measured infrared limb radiances are converted into a 3D observational temperature field through the use of inverse modelling and limited angle tomography. We observe GWs along a transect through Greenland where the GW packet covers ≈ 1/3 of the Greenland mainland. GLORIA observations indicate GWs between 10 and 13 km altitude with a horizontal wavelength of 330 km, a vertical wavelength of 2 km and a large temperature amplitude of 4.5 K. Slanted phase fronts indicate intrinsic propagation against the wind, while the the ground-based propagation is with the wind. The GWs are arrested below a critical layer above the tropospheric jet. Compared to its intrinsic horizontal group velocity (25–72 ms−1) the GW packet has a slow vertical group velocity of 0.05–0.2 ms−1. This causes the GW packet to propagate long distances while spreading over a large area while remaining constrained to a narrow vertical layer. Not only orography is a plausible source, but also out of balanced winds in a jet exit region and wind shear. To identify the GW source, 3D GLORIA observations are combined with a gravity wave raytracer, ERA5 reanalysis, and high-resolution numerical experiments. In a numerical experiment with a smoothed orography, GW activity is quite weak indicating that the GWs in the realistic orography experiment are due to orography. However, analysis shows that these GWs are not mountain waves. A favourable area for spontaneous GW emission is identified in the jet by the cross-stream ageostrophic wind, which indicates when the flow is out of geostrophic balance. Backwards raytracing experiments trace into the jet and regions where the Coriolis and the pressure gradient forces are out of balance. The difference between the full and a smooth-orography experiment is investigated to reveal the missing connection between orography and the out of balance jet. We find that this is flow over a broad area of elevated terrain which causes compression of air above Greenland. The orography modifies the wind flow over large horizontal and vertical scales, resulting in out of balance geostrophic components. The out of balance jet then excites GWs in order to bring the flow back into balance. This is the first observational evidence of GW generation by such an orography-jet mechanism.


2010 ◽  
Vol 23 (22) ◽  
pp. 5905-5926 ◽  
Author(s):  
Andrew Orr ◽  
Peter Bechtold ◽  
John Scinocca ◽  
Manfred Ern ◽  
Marta Janiskova

Abstract In model cycle 35r3 (Cy35r3) of the ECMWF Integrated Forecast System (IFS), the momentum deposition from small-scale nonorographic gravity waves is parameterized by the Scinocca scheme, which uses hydrostatic nonrotational wave dynamics to describe the vertical evolution of a broad, constant, and isotropic spectrum of gravity waves emanating from the troposphere. The Cy35r3 middle atmosphere climate shows the following: (i) an improved representation of the zonal-mean circulation and temperature structure; (ii) a realistic parameterized gravity wave drag; (iii) a reasonable stationary planetary wave structure and stationary wave driving in July and an underestimate of the generation of stationary wave activity in the troposphere and stationary wave driving in January; (iv) an improved representation of the tropical variability of the stratospheric circulation, although the westerly phase of the semiannual oscillation is missing; and (v) a realistic horizontal distribution of momentum flux in the stratosphere. By contrast, the middle atmosphere climate is much too close to radiative equilibrium when the Scinocca scheme is replaced by Rayleigh friction, which was the standard method of parameterizing the effects of nonorographic gravity waves in the IFS prior to Cy35r3. Finally, there is a reduction in Cy35r3 short-range high-resolution forecast error in the upper stratosphere.


2016 ◽  
Vol 16 (15) ◽  
pp. 9983-10019 ◽  
Author(s):  
Manfred Ern ◽  
Quang Thai Trinh ◽  
Martin Kaufmann ◽  
Isabell Krisch ◽  
Peter Preusse ◽  
...  

Abstract. Sudden stratospheric warmings (SSWs) are circulation anomalies in the polar region during winter. They mostly occur in the Northern Hemisphere and affect also surface weather and climate. Both planetary waves and gravity waves contribute to the onset and evolution of SSWs. While the role of planetary waves for SSW evolution has been recognized, the effect of gravity waves is still not fully understood, and has not been comprehensively analyzed based on global observations. In particular, information on the gravity wave driving of the background winds during SSWs is still missing.We investigate the boreal winters from 2001/2002 until 2013/2014. Absolute gravity wave momentum fluxes and gravity wave dissipation (potential drag) are estimated from temperature observations of the satellite instruments HIRDLS and SABER. In agreement with previous work, we find that sometimes gravity wave activity is enhanced before or around the central date of major SSWs, particularly during vortex-split events. Often, SSWs are associated with polar-night jet oscillation (PJO) events. For these events, we find that gravity wave activity is strongly suppressed when the wind has reversed from eastward to westward (usually after the central date of a major SSW). In addition, gravity wave potential drag at the bottom of the newly forming eastward-directed jet is remarkably weak, while considerable potential drag at the top of the jet likely contributes to the downward propagation of both the jet and the new elevated stratopause. During PJO events, we also find some indication for poleward propagation of gravity waves. Another striking finding is that obviously localized gravity wave sources, likely mountain waves and jet-generated gravity waves, play an important role during the evolution of SSWs and potentially contribute to the triggering of SSWs by preconditioning the shape of the polar vortex. The distribution of these hot spots is highly variable and strongly depends on the zonal and meridional shape of the background wind field, indicating that a pure zonal average view sometimes is a too strong simplification for the strongly perturbed conditions during the evolution of SSWs.


2021 ◽  
Vol 21 (17) ◽  
pp. 13631-13654
Author(s):  
Fabio Vargas ◽  
Jorge L. Chau ◽  
Harikrishnan Charuvil Asokan ◽  
Michael Gerding

Abstract. We describe in this study the analysis of small and large horizontal-scale gravity waves from datasets composed of images from multiple mesospheric airglow emissions as well as multistatic specular meteor radar (MSMR) winds collected in early November 2018, during the SIMONe–2018 (Spread-spectrum Interferometric Multi-static meteor radar Observing Network) campaign. These ground-based measurements are supported by temperature and neutral density profiles from TIMED/SABER (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry) satellite in orbits near Kühlungsborn, northern Germany (54.1∘ N, 11.8∘ E). The scientific goals here include the characterization of gravity waves and their interaction with the mean flow in the mesosphere and lower thermosphere and their relationship to dynamical conditions in the lower and upper atmosphere. We have obtained intrinsic parameters of small- and large-scale gravity waves and characterized their impact in the mesosphere via momentum flux (FM) and momentum flux divergence (FD) estimations. We have verified that a small percentage of the detected wave events is responsible for most of FM measured during the campaign from oscillations seen in the airglow brightness and MSMR winds taken over 45 h during four nights of clear-sky observations. From the analysis of small-scale gravity waves (λh < 725 km) seen in airglow images, we have found FM ranging from 0.04–24.74 m2 s−2 (1.62 ± 2.70 m2 s−2 on average). However, small-scale waves with FM > 3 m2 s−2 (11 % of the events) transport 50 % of the total measured FM. Likewise, wave events of FM > 10 m2 s−2 (2 % of the events) transport 20 % of the total. The examination of large-scale waves (λh > 725 km) seen simultaneously in airglow keograms and MSMR winds revealed amplitudes > 35 %, which translates into FM = 21.2–29.6 m2 s−2. In terms of gravity-wave–mean-flow interactions, these large FM waves could cause decelerations of FD = 22–41 m s−1 d−1 (small-scale waves) and FD = 38–43 m s−1 d−1 (large-scale waves) if breaking or dissipating within short distances in the mesosphere and lower thermosphere region.


2002 ◽  
Vol 64 (8-11) ◽  
pp. 1003-1010 ◽  
Author(s):  
Nikolai M Gavrilov ◽  
Shoichiro Fukao ◽  
Takuji Nakamura ◽  
Christoph Jacobi ◽  
Dierk Kürschner ◽  
...  

2009 ◽  
Vol 27 (7) ◽  
pp. 2789-2798 ◽  
Author(s):  
X. Liu ◽  
J. Xu ◽  
H. Gao ◽  
G. Chen

Abstract. The Kelvin-Helmholtz (KH) billows which appear in the process of gravity wave (GW) propagation are simulated directly by using a compressible nonlinear two-dimensional gravity wave model. The differences between our model and others include: the background field has no special initial configuration and there is no initial triggering mechanism needed in the mesosphere and lower thermosphere (MLT) region to excite the KH billows. However, the initial triggering mechanism is performed in the lower atmosphere through GW, which then propagate into the MLT region and form billows. The braid structures and overturning of KH billows, caused by nonlinear interactions between GWs and mean flow, can be resolved precisely by the model. These results support the findings in airglow studies that GWs propagating from below into the MLT region are important sources of KH billows. The onset of small scale waves and the wave energy transfer induce the shallower vertical wave number power spectral densities (PSD). However, most of the slopes are steeper than the expected kz−3 power law, which indicates that GWs with 10 km vertical wavelength are still a dominant mode. The results also show that the evolution of mean wind vary substantially between the different processes of GWs propagation. Before the KH billows evolve, the mean wind is accelerated greatly by GWs. By contrast, as the KH billows evolve and mix with mean flow, the mean wind and its peak value decrease.


Sign in / Sign up

Export Citation Format

Share Document