scholarly journals Saturation and hysteresis effects in ionospheric modification experiments observed by the CUTLASS and EISCAT radars

2006 ◽  
Vol 24 (2) ◽  
pp. 543-553 ◽  
Author(s):  
D. M. Wright ◽  
J. A. Davies ◽  
T. K. Yeoman ◽  
T. R. Robinson ◽  
H. Shergill

Abstract. The results of high latitude ionospheric modification experiments utilising the EISCAT heating facility at Tromsø are presented. As a result of the interaction between the high power pump waves and upper hybrid waves in the ionosphere, field-aligned electron density irregularities are artificially excited. Observations of these structures with the CUTLASS coherent HF radars and the EISCAT incoherent UHF radar exhibit hysteresis effects as the heater output power is varied. These are explained in terms of the two-stage mechanism which leads to the growth of the irregularities. Experiments which involve preconditioning of the ionosphere also indicate that hysteresis could be exploited to maximise the intensity of the field-aligned irregularities, especially where the available heater power is limited. In addition, the saturation of the irregularity amplitude is considered. Although, the rate of irregularity growth becomes less rapid at high heater powers it does not seem to fully saturate, indicating that the amplification would continue beyond the capabilities of the Tromsø heater - currently the most powerful of its kind. It is shown that the CUTLASS radars are sensitive to irregularities produced by very low heater powers (effective radiated powers <4 MW). This fact is discussed from the perspective of a new heating facility, SPEAR, located on Spitzbergen and capable of transmitting high frequency radio waves with an effective radiated power ~10% of that of the Tromsø heater (28MW).

2015 ◽  
Vol 33 (8) ◽  
pp. 983-990 ◽  
Author(s):  
H. Y. Fu ◽  
W. A. Scales ◽  
P. A. Bernhardt ◽  
S. J. Briczinski ◽  
M. J. Kosch ◽  
...  

Abstract. Observations of secondary radiation, stimulated electromagnetic emission (SEE), produced during ionospheric modification experiments using ground-based, high-power, high-frequency (HF) radio waves are considered. The High Frequency Active Auroral Research Program (HAARP) facility is capable of generating narrowband SEE in the form of stimulated Brillouin scatter (SBS) and stimulated ion Bernstein scatter (SIBS) in the SEE spectrum. Such narrowband SEE spectral lines have not been reported using the European Incoherent Scatter (EISCAT) heater facility before. This work reports the first EISCAT results of narrowband SEE spectra and compares them to SEE previously observed at HAARP during electron gyro-harmonic heating. An analysis of experimental SEE data shows observations of emission lines within 100 Hz of the pump frequency, interpreted as SBS, during the 2012 July EISCAT campaign. Experimental results indicate that SBS strengthens as the pump frequency approaches the third electron gyro-harmonic. Also, for different heater antenna beam angles, the CUTLASS radar backscatter induced by HF radio pumping is suppressed near electron gyro-harmonics, whereas electron temperature enhancement weakens as measured by EISCAT/UHF radar. The main features of these new narrowband EISCAT observations are generally consistent with previous SBS measurements at HAARP.


1997 ◽  
Vol 15 (11) ◽  
pp. 1412-1421 ◽  
Author(s):  
G. E. Bond ◽  
T. R. Robinson ◽  
P. Eglitis ◽  
D. M. Wright ◽  
A. J. Stocker ◽  
...  

Abstract. Results are presented from an experimental campaign in April 1996, in which the new CUTLASS (Co-operative UK twin-located Auroral Sounding System) coherent scatter radar was employed to observe artificial field aligned irregularities (FAI) generated by the EISCAT (European Incoherent SCATter) heating facility at Tromsø, Norway. The distribution of backscatter intensity from within the heated region has been investigated both in azimuth and range with the Finland component of CUTLASS, and the first observations of artificial irregularities by the Iceland radar are also presented. The heated region has been measured to extend over a horizontal distance of 170±50km, which by comparison with a model of the heater beam pattern corresponds to a threshold electric field for FAI of between 0.1 and 0.01V/m. Differences between field-aligned and vertical propagation heating are also presented.


2005 ◽  
Vol 23 (1) ◽  
pp. 75-85 ◽  
Author(s):  
R. S. Dhillon ◽  
T. R. Robinson

Abstract. The EISCAT incoherent radar system, which is collocated with the EISCAT heating facility, is used to diagnose the ionosphere while heating experiments are conducted. In late September 2002, an experiment was performed in which the heater transmitted a 2-min-on/2-min-off cycle while its pointing direction was kept fixed and the UHF beam was cycled through five pointing directions. This UHF cycle was used for three heater beam-pointing directions. For field-aligned heater beam and UHF pointing, UHF data indicated a gradual decrease, with time, in the altitude at which enhanced ion-line scatter occurred. This was accompanied by a reduction in the intensity of the scatter. For field-aligned heater pointing and the UHF elevation angle of 6° in the field-aligned direction, a persistent high-amplitude signature was observed, which remained at a fairly constant altitude throughout the period that the heater remained switched on. Different time histories of the backscatter amplitude were observed in other UHF pointing directions, including the "ion-line overshoot", which is characterized by an increase and subsequent decrease in the heater-enhanced backscatter just after heater switch-on. It is suggested that these signatures may be caused by the presence or absence of field-aligned irregularities and reduced recombination caused by heating. The CUTLASS coherent radar system, which operated simultaneously with the UHF radar and the heater, observed backscatter from field-aligned irregularities created by the heater. The intensity of this backscatter was highest from the regions of the ionosphere that were excited by the central part of the heater beam.


Radio Science ◽  
1985 ◽  
Vol 20 (3) ◽  
pp. 303-309 ◽  
Author(s):  
Kenneth Davies ◽  
Charles M. Rush
Keyword(s):  

2021 ◽  
Vol 14 (2) ◽  
pp. 155-160

Abstract: We investigate the spectra of high-frequency electrostatic surface electron plasmon oscillations propagating normal to a dc-magnetic field. These oscillations are supported by two identical magnetoplasma slabs separated by a vacuum slab. Propagation characteristics of surface magnetoplasma oscillations and their coupling are studied by simultaneously solving the homogeneous system of equations obtained by matching the electrostatic fields at the interfaces together with the warm plasma dielectric function of upper hybrid waves. We demonstrate the existence of two propagating magnetoplasma electrostatic surface modes (backward and forward modes). The backward mode emerges at frequency ω=ω_uh=√(ω_pe^2+ω_ce^2 ), where ω_pe and ω_ce are the electron plasma frequency and the electron cyclotron frequency, respectivily, and the forward propagating mode emerges at a lower frequency ω=ω_uh-ω_pe. The forward and backward surface modes become coupled and form a single mode at upper hybrid resonance quasi-static value ω=ω_uh/√2. Keywords: Upper hybrid modes, Plasma slab waveguide, Coupled plasmon surface modes.


2005 ◽  
Vol 23 (1) ◽  
pp. 47-53 ◽  
Author(s):  
E. V. Mishin ◽  
W. J. Burke ◽  
T. Pedersen

Abstract. Observations of airglow at 630nm (red line) and 557.7nm (green line) during HF modification experiments at the High Frequency Active Auroral Research Program (HAARP) heating facility are analyzed. We propose a theoretical framework for understanding the generation of Langmuir and ion acoustic waves during magnetic zenith injections. We show that observations of HF-induced airglow in an underdense ionosphere as well as a decrease in the height of the emitting volume are consistent with this scenario.


2012 ◽  
Vol 30 (8) ◽  
pp. 1213-1222 ◽  
Author(s):  
G. I. Mingaleva ◽  
V. S. Mingalev ◽  
O. V. Mingalev

Abstract. A mathematical model of the ionosphere, developed earlier, is applied to investigate the large-scale mid-latitude F-layer modification by HF radio waves with different powers. Simulations are performed for the point with geographic coordinates of the "Sura" heating facility (Nizhny Novgorod, Russia) for autumn conditions. The calculations are made for distinct cases, in which the effective absorbed power has different values belonging to the 5–100 MW range, both for nocturnal and daytime conditions. The frequency of powerful HF waves is chosen to be close to the most effective frequency for the large-scale F2-layer modification. The results of modeling indicate that the effective absorbed power can influence considerably the F-layer response to high-power radio waves in the mid-latitude ionosphere.


2013 ◽  
Vol 22 (1) ◽  
Author(s):  
F. I. Vybornov ◽  
A. V. Rakhlin

AbstractWe present the results of investigation of a multifractal structure of the artificial ionospheric turbulence when the midlatitude ionosphere is affected by high-power radio waves. The experimental studies were performed on the basis of the SURA heating facility with the help of radio sounding of the disturbed region of ionospheric plasma by signals from the Earth’s orbital satellities. In the case of vertical radio sounding of the disturbed ionosphere region, the measured multipower and generalized multifractal spectra of turbulence coincide well with similar multifractal characteristics of the ionosperic turbulence under the natural conditions. In the case of oblique sounding of the disturbance region at small angles between the line of sight to the satellite and the direction of the Earth’s magnetic field, a nonuniform structure of the small-scale turbulence with a relatively narrow multipower spectrum and small variations in the generalized multifractal spectrum of the electron density was detected.


1993 ◽  
Vol 157 ◽  
pp. 311-312
Author(s):  
Matthias Ehle ◽  
Rainer Beck

High frequency polarization observations reveal the existence of a large-scale ordered magnetic field in the disk of the spiral galaxy NGC 6946. At lower frequencies the disk is no longer transparent to polarized radio waves due to Faraday depolarization. The spiral pattern of the uniform magnetic field and the distribution of polarized intensities are fairly well simulated by a dynamo model. The model parameters indicate that the dynamo does not only operate in the disk, but also in the halo.


Sign in / Sign up

Export Citation Format

Share Document