scholarly journals Stratospheric influence on the mesosphere–lower thermosphere over mid latitudes in winter observed by a Fabry–Perot interferometer

2021 ◽  
Vol 39 (1) ◽  
pp. 267-276
Author(s):  
Olga S. Zorkaltseva ◽  
Roman V. Vasilyev

Abstract. In this paper, we study the response of the mesosphere–lower thermosphere (MLT) to sudden stratospheric warmings (SSWs) and the activity of planetary waves (PWs). We observe the 557.7 nm optical emission to retrieve the MLT wind and temperature with the only Fabry–Perot interferometer (FPI) in Russia. The FPI is located at the mid latitudes of eastern Siberia within the Tory Observatory (TOR) at the Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences (ISTP SB RAS, 51.8∘ N, 103.1∘ E). Regular interferometer monitoring started in December 2016. Here, we address the temporal variations in the 557.7 nm emission intensity as well as the variations in wind and temperature measured during the 2016–2020 winters. Both SSWs and PWs appear to have equally strong effects in the upper atmosphere. When the 557.7 nm emission decreases due to some influences from below (SSWs or PWs), the temperature increases significantly, as does its variability. The dispersion of zonal wind does not show significant PW- and SSW-correlated variations, but the dominant MLT zonal wind reverses during major SSW events simultaneously with the averaged zonal wind at 60∘ N in the stratosphere.

2020 ◽  
Author(s):  
Olga S. Zorkaltseva ◽  
Roman V. Vasilyev

Abstract. In this paper, we study the response of the mesosphere and lower thermosphere (MLT) to sudden stratospheric warmings (SSWs) and the activity of stationary planetary waves (SPWs). We observe the 557.7-nm optical emission for retrieve the MLT wind, temperature with the Fabry-Perot interferometer (FPI) that has no analogues in Russia. The FPI is located at the mid-latitudes of Eastern Siberia within the Tory Observatory (TOR) at the Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences (ISTP SB RAS, 51.8N, 103.1E). Regular interferometer monitoring started in Dec 2016. Here, we address the temporal variations in the 557.7-nm emission intensity, as well as the variations in wind, temperature, and their variability obtained by using the line parameters measurement during the 2016–2020 winters. Both SSWs and SPWs appear to have equally strong effects in the upper atmosphere. When the 557.7-nm emission decreases due to some influences from below (SSWs or SPWs), the temperature variation observed by using this line and the temperature itself increase significantly. The zonal wind dispersion does not show significant SPW- and SSW-correlated variations, but the dominant zonal wind reverses during major SSW events the same as the averaged zonal wind at 60N in the stratosphere does without significant delays.


2018 ◽  
Vol 4 (2) ◽  
pp. 49-57 ◽  
Author(s):  
Роман Васильев ◽  
Roman Vasilyev ◽  
Максим Артамонов ◽  
Maksim Artamonov ◽  
Евгений Мерзляков ◽  
...  

Studies of the upper atmosphere wind are very important both for understanding the mechanism of transformation of exposure energy into heating, movement and chemical activity of the atmosphere, and similar processes of energy transfer from lower to upper atmospheric layers. Instruments and methods for studying the wind velocity and its variations at different height levels usually complement each other in such studies. We perform a comparative analysis of information about the neutral horizontal wind over Eastern Siberia in the winter-spring period obtained by different methods. We observe some features appearing at different heights during geomagnetic storms and sudden stratospheric warming events. We propose a method for comparative statistical analysis of the neutral wind registered at different sites and show its validity. Using this method, we make a quantitative comparison of winds measured over Eastern Siberia in the winter-spring period. The wind measured by the meteor radar and Fabry-Perot interferometer at 90 km has similar direction and absolute velocity. The wind measured by the Fabry—Perot interferometer at 100 km differs from that estimated by the meteor radar only in direction. The wind measured by the Fabry—Perot interferometer at 250 km has a velocity 2.5 times faster and a direction differing by 30–40° from the wind obtained by the meteor radar.


2021 ◽  
Author(s):  
Kanykei Kandieva ◽  
Christoph Jacobi ◽  
Khalil Karami ◽  
Alexander Pogoreltsev ◽  
Evgeny Merzlyakov ◽  
...  

<p class="western" align="left">Radar observations from two SKiYMET radars at Collm (51°N, 13°E) and Kazan (56°N, 49°E) during 2016-2017 are used to investigate the longitudinal variability of the mesosphere/lower thermosphere (MLT) wind regime over western and eastern Europe. Both of the meteor radars have similar setups and apply the same analysis procedures to correctly compare MLT parameters and validate the simulated winds. The radar observations confirm the established seasonal variability of the wind distribution, but this distribution is not identical for the two stations. The results show good qualitative agreement with global circulations model predictions by the Middle and Upper Atmosphere Model (MUAM) and the Upper Atmosphere ICOsahedral Non-hydrostatic model (UA-ICON). The MUAM and UA-ICON models well reproduce the main dynamical features, namely the vertical and temporal distributions of the winds observed throughout the year. However, there are also some differences in the longitudinal wind variability of the models and radar observations. Numerical experiments with modified parameterization settings have also been carried out to study the response of the MLT wind circulation to the gravity waves originating from the lower atmosphere. The MUAM model results show that a decrease/increase in the gravity wave intensity at the lower atmosphere leads to an increase/decrease of the mesospheric zonal wind jet extension and the zonal wind reversal.</p>


2018 ◽  
Vol 4 (2) ◽  
pp. 86-95
Author(s):  
Роман Васильев ◽  
Roman Vasilyev ◽  
Максим Артамонов ◽  
Maksim Artamonov ◽  
Евгений Мерзляков ◽  
...  

Studies of the upper atmosphere wind are very important both for understanding the mechanism of transformation of exposure energy into heating, movement and chemical activity of the atmosphere, and similar processes of energy transfer from lower to upper atmospheric layers. Instruments and methods for studying the wind velocity and its variations at different height levels usually complement each other in such studies. We perform a comparative analysis of information about the neutral horizontal wind over Eastern Siberia in the winter-spring period obtained by different methods. We observe some features appearing at different heights during geomagnetic storms and sudden stratospheric warming events. We propose a method for comparative statistical analysis of the neutral wind registered at different sites and show its validity. Using this method, we make a quantitative comparison of winds measured over Eastern Siberia in the winter-spring period. The wind measured by the meteor radar and Fabry — Perot interferometer at 90 km has similar direction and absolute velocity. The wind measured by the Fabry — Perot interferometer at 100 km differs from that estimated by the meteor radar only in direction. The wind measured by the Fabry — Perot interferometer at 250 km has a velocity 2.5 times faster and a direction differing by 30–40° from the wind obtained by the meteor radar.


2021 ◽  
Vol 13 (12) ◽  
pp. 5643-5661
Author(s):  
Xiao Liu ◽  
Jiyao Xu ◽  
Jia Yue ◽  
You Yu ◽  
Paulo P. Batista ◽  
...  

Abstract. Zonal winds in the stratosphere and mesosphere play important roles in atmospheric dynamics and aeronomy. However, the direct measurement of winds in this height range is difficult. We present a dataset of the monthly mean zonal wind in the height range of 18–100 km and at latitudes of 50∘ S–50∘ N from 2002 to 2019, derived by the gradient balance wind theory and the temperature and pressure observed by the SABER instrument. The tide alias above 80 km at the Equator is replaced by the monthly mean zonal wind measured by a meteor radar at 0.2∘ S. The dataset (named BU) is validated by comparing with the zonal wind from MERRA2 (MerU), UARP (UraU), the HWM14 empirical model (HwmU), meteor radar (MetU), and lidar (LidU) at seven stations from around 50∘ N to 29.7∘ S. At 18–70 km, BU and MerU have (i) nearly identical zero wind lines and (ii) year-to-year variations of the eastward and westward wind jets at middle and high latitudes, and (iii) the quasi-biennial oscillation (QBO) and semi-annual oscillation (SAO) especially the disrupted QBO in early 2016. The comparisons among BU, UraU, and HwmU show good agreement in general below 80 km. Above 80 km, the agreements among BU, UraU, HwmU, MetU, and LidU are good in general, except some discrepancies at limited heights and months. The BU data are archived as netCDF files and are available at https://doi.org/10.12176/01.99.00574 (Liu et al., 2021). The advantages of the global BU dataset are its large vertical extent (from the stratosphere to the lower thermosphere) and 18-year internally consistent time series (2002–2019). The BU data is useful to study the temporal variations with periods ranging from seasons to decades at 50∘ S–50∘ N. It can also be used as the background wind for atmospheric wave propagation.


2020 ◽  
Vol 2 (1) ◽  
pp. 54-68 ◽  
Author(s):  
Natalia A. Kupershtokh

The reform of the RAS 2013 interrupted the long-term strategy of the Russian Academy of Sciences for the consistent development of regional scientific potential. The essence of this strategy was to gradually build up “scientific” forces in the field and to organize them first in branches and then in scientific centers of the Academy of Sciences of the USSR / RAS. Regional scientific complexes have come a long way in their formation: from single laboratories and stations at the beginning of the 20th century to interdisciplinary scientific and educational complexes of the XXI century. The regional scientific centers of the Russian Academy of Sciences have proven their effectiveness as centers that coordinate and manage the activities of scientists both vertically and horizontally. The article shows the history of the formation of a system of scientific centers, coordination and management of scientific research in the Siberian Branch of the Russian Academy of Sciences since 1957. On the eve of the 2013 reform, the SB RAS represented a system of nine research centers located in Western and Eastern Siberia. The results of the policy of optimization of scientific potential, and, in fact, “collapse” of a number of scientific centers of the SB RAS, are analyzed. This policy was pursued by the Federal Agency for Scientific Organizations (FANO) in 2013–2018 and the Ministry of Science and Higher Education of the Russian Federation in 2018–2019.


2012 ◽  
Vol 30 (6) ◽  
pp. 991-1001 ◽  
Author(s):  
X. Chen ◽  
X. Hu ◽  
C. Xiao

Abstract. The mesosphere and lower thermosphere (MLT) wind structure over Wuhan (30° N, 114° E) in 2000/2001 winter and over Langfang (39.4° N, 116.6° E) in 2009/2010 winter are examined to reveal the effects of stratospheric sudden warming (SSW) in mid-low-latitude MLT region. The result shows that the MLT daily zonal wind over these two sites reversed from eastward wind to westward wind for several days during the SSW events. The reversals were almost coincident with the polar stratospheric temperature reaching its maximum at 10 hPa, 90° N and were about ten days prior to the reversal of high latitude stratospheric zonal wind at 10 hPa, 60° N. The temporal variations of tides, gravity waves and 2-day planetary waves in the mid-latitude MLT showed different behavior during the two SSW events. During the 2001 SSW event, MLT diurnal tide reached its maximum when the MLT zonal wind decreased rapidly and SSW event began in polar stratosphere; the activity of 2-day waves decreased after the onset of the 2001 SSW, while the gravity wave increased when the 2001 SSW developed into a major warming. However, in the 2009/2010 winter, the semidiurnal tide and 2-day wave in MLT over Langfang reached a peak about two days earlier than zonal wind reversal at 10 hPa, 60° N; no significant features were found in diurnal tides, terdiurnal tides and gravity waves related to the 2010 SSW event.


2019 ◽  
Vol 9 ◽  
pp. A39 ◽  
Author(s):  
Maxim V. Klimenko ◽  
Vladimir V. Klimenko ◽  
Fedor S. Bessarab ◽  
Timofei V. Sukhodolov ◽  
Pavel A. Vasilev ◽  
...  

We apply the Entire Atmosphere GLobal (EAGLE) model to investigate the upper atmosphere response to the January 2009 sudden stratospheric warming (SSW) event. The model successfully reproduces neutral temperature and total electron content (TEC) observations. Using both model and observational data, we identify a cooling in the tropical lower thermosphere caused by the SSW. This cooling affects the zonal electric field close to the equator, leading to an enhanced vertical plasma drift. We demonstrate that along with a SSW-related wind disturbance, which is the main source to form a dynamo electric field in the ionosphere, perturbations of the ionospheric conductivity also make a significant contribution to the formation of the electric field response to SSW. The post-sunset TEC enhancement and pre-sunrise electron content reduction are revealed as a response to the 2009 SSW. We show that at post-sunset hours the SSW affects low-latitude TEC via a disturbance of the meridional electric field. We also show that the phase change of the semidiurnal migrating solar tide (SW2) in the neutral wind caused by the 2009 SSW at the altitude of the dynamo electric field generation has a crucial importance for the SW2 phase change in the zonal electric field. Such changes lead to the appearance of anomalous diurnal variability of the equatorial electromagnetic plasma drift and subsequent low-latitudinal TEC disturbances in agreement with available observations. Plain Language Summary – Entire Atmosphere GLobal model (EAGLE) interactively calculates the troposphere, stratosphere, mesosphere, thermosphere, and plasmasphere–ionosphere system states and their response to various natural and anthropogenic forcing. In this paper, we study the upper atmosphere response to the major sudden stratospheric warming that occurred in January 2009. Our results agree well with the observed evolution of the neutral temperature in the upper atmosphere and with low-latitude ionospheric disturbances over America. For the first time, we identify an SSW-related cooling in the tropical lower thermosphere that, in turn, could provide additional information for understanding the mechanisms for the generation of electric field disturbances observed at low latitudes. We show that the SSW-related vertical electromagnetic drift due to electric field disturbances is a key mechanism for interpretation of an observed anomalous diurnal development of the equatorial ionization anomaly during the 2009 SSW event. We demonstrate that the link between thermospheric winds and the ionospheric dynamo electric field during the SSW is attained through the modulation of the semidiurnal migrating solar tide.


Author(s):  
MUKAEVA L. ◽  

The article considers the history of the creation and development of the first Russian village in the Altai Mountains - the village of Cherga, which appeared in 1820-s a settlement of peasants assigned to the Cabinet mining plants. According to the author, Cherga played an important role in the economic development of the north-western part of the Altai Mountains. Cherga peasants were successfully engaged in arable farming, cattle breeding, mountain beekeeping, private hauling and taiga fisheries. In the vicinity of Cherga in the second half of the 19th century, there were large dairy farms of entrepreneurs who used advanced technologies and innovations in their farms. In Soviet times, Cherga with the surrounding villages turned into a large multi-industry state farm in the Altai Mountains. The traditions of innovation in Cherga were fully manifested in the 1980-s, when the Altai Experimental Farm of the Siberian Branch of the Academy of Sciences of USSR was formed on the basis of the Cherginsky State Farm, which was still active at the beginning of the 20th century. Keywords: Seminskaya Valley, Cherga, peasants, economic development, Altai experimental farm SB RAS


Sign in / Sign up

Export Citation Format

Share Document