Non-zonal structures of the midlatitude mesosphere/lower thermosphere dynamics studied by using atmospheric models and radar observations.

2021 ◽  
Author(s):  
Kanykei Kandieva ◽  
Christoph Jacobi ◽  
Khalil Karami ◽  
Alexander Pogoreltsev ◽  
Evgeny Merzlyakov ◽  
...  

<p class="western" align="left">Radar observations from two SKiYMET radars at Collm (51°N, 13°E) and Kazan (56°N, 49°E) during 2016-2017 are used to investigate the longitudinal variability of the mesosphere/lower thermosphere (MLT) wind regime over western and eastern Europe. Both of the meteor radars have similar setups and apply the same analysis procedures to correctly compare MLT parameters and validate the simulated winds. The radar observations confirm the established seasonal variability of the wind distribution, but this distribution is not identical for the two stations. The results show good qualitative agreement with global circulations model predictions by the Middle and Upper Atmosphere Model (MUAM) and the Upper Atmosphere ICOsahedral Non-hydrostatic model (UA-ICON). The MUAM and UA-ICON models well reproduce the main dynamical features, namely the vertical and temporal distributions of the winds observed throughout the year. However, there are also some differences in the longitudinal wind variability of the models and radar observations. Numerical experiments with modified parameterization settings have also been carried out to study the response of the MLT wind circulation to the gravity waves originating from the lower atmosphere. The MUAM model results show that a decrease/increase in the gravity wave intensity at the lower atmosphere leads to an increase/decrease of the mesospheric zonal wind jet extension and the zonal wind reversal.</p>

Author(s):  
Friederike Lilienthal ◽  
Erdal Yiğit ◽  
Nadja Samtleben ◽  
Christoph Jacobi

Implementing a nonlinear gravity wave (GW) parameterization into a mechanistic middle and upper atmosphere model, which extends to the lower thermosphere (160 km), we study the response of the atmosphere in terms of the circulation patterns, temperature distribution, and migrating terdiurnal solar tide activity to the upward propagating small-scale internal GWs originating in the lower atmosphere. We perform three test simulations for the Northern Hemisphere winter conditions in order to assess the effects of variations in the initial GW spectrum on the climatology and tidal patterns of the mesosphere and lower thermosphere. We find that the overall strength of the source level momentum flux has a relatively small impact on the zonal mean climatology. The tails of the GW source level spectrum, however, are crucial for the lower thermosphere climatology. With respect to the terdiurnal tide, we find a strong dependence of tidal amplitude on the induced GW drag, generally being larger when GW drag is increased.


Author(s):  
Erdal Yiğit ◽  
Alexander S. Medvedev ◽  
Manfred Ern

Atmospheric gravity waves (GWs) are generated in the lower atmosphere by various weather phenomena. They propagate upward, carry energy and momentum to higher altitudes, and appreciably influence the general circulation upon depositing them in the middle and upper atmosphere. We use a three-dimensional first-principle general circulation model (GCM) with implemented nonlinear whole atmosphere GW parameterization to study the global climatology of wave activity and produced effects at altitudes up to the upper thermosphere. The numerical experiments were guided by the GW momentum fluxes and temperature variances as measured in 2010 by the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) instrument onboard NASA’s TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics) satellite. This includes the latitudinal dependence and magnitude of GW activity in the lower stratosphere for the boreal summer season. The modeling results were compared to the SABER temperature and total absolute momentum flux and Upper Atmosphere Research Satellite (UARS) data in the mesosphere and lower thermosphere. Simulations suggest that, in order to reproduce the observed circulation and wave activity in the middle atmosphere, GW fluxes that are smaller than observed fluxes have to be used at the source level in the lower atmosphere. This is because observations contain a broader spectrum of GWs, while parameterizations capture only a portion relevant to the middle and upper atmosphere dynamics. Accounting for the latitudinal variations of the source appreciably improves simulations.


2020 ◽  
Vol 20 (12) ◽  
pp. 7617-7644
Author(s):  
In-Sun Song ◽  
Changsup Lee ◽  
Hye-Yeong Chun ◽  
Jeong-Han Kim ◽  
Geonhwa Jee ◽  
...  

Abstract. Effects of realistic propagation of gravity waves (GWs) on distribution of GW pseudomomentum fluxes are explored using a global ray-tracing model for the 2009 sudden stratospheric warming (SSW) event. Four-dimensional (4D; x–z and t) and two-dimensional (2D; z and t) results are compared for various parameterized pseudomomentum fluxes. In ray-tracing equations, refraction due to horizontal wind shear and curvature effects are found important and comparable to one another in magnitude. In the 4D, westward pseudomomentum fluxes are enhanced in the upper troposphere and northern stratosphere due to refraction and curvature effects around fluctuating jet flows. In the northern polar upper mesosphere and lower thermosphere, eastward pseudomomentum fluxes are increased in the 4D. GWs are found to propagate more to the upper atmosphere in the 4D, since horizontal propagation and change in wave numbers due to refraction and curvature effects can make it more possible that GWs elude critical level filtering and saturation in the lower atmosphere. GW focusing effects occur around jet cores, and ray-tube effects appear where the polar stratospheric jets vary substantially in space and time. Enhancement of the structure of zonal wave number 2 in pseudomomentum fluxes in the middle stratosphere begins from the early stage of the SSW evolution. An increase in pseudomomentum fluxes in the upper atmosphere is present even after the onset in the 4D. Significantly enhanced pseudomomentum fluxes, when the polar vortex is disturbed, are related to GWs with small intrinsic group velocity (wave capture), and they would change nonlocally nearby large-scale vortex structures without substantially changing local mean flows.


2021 ◽  
Author(s):  
In-Sun Song ◽  
Changsup Lee ◽  
Hye-Yeong Chun ◽  
Jeong-Han Kim ◽  
Geonhwa Jee ◽  
...  

<p>Effects of realistic propagation of gravity waves (GWs) on distribution of GW pseudomomentum fluxes are explored using a global ray-tracing model for the 2009 sudden stratospheric warming (SSW) event. Four-dimensional (4D; <span><em>x</em></span>–<span><em>z</em></span> and <span><em>t</em></span>) and two-dimensional (2D; <span><em>z</em></span> and <span><em>t</em></span>) results are compared for various parameterized pseudomomentum fluxes. In ray-tracing equations, refraction due to horizontal wind shear and curvature effects are found important and comparable to one another in magnitude. In the 4D, westward pseudomomentum fluxes are enhanced in the upper troposphere and northern stratosphere due to refraction and curvature effects around fluctuating jet flows. In the northern polar upper mesosphere and lower thermosphere, eastward pseudomomentum fluxes are increased in the 4D. GWs are found to propagate more to the upper atmosphere in the 4D, since horizontal propagation and change in wave numbers due to refraction and curvature effects can make it more possible that GWs elude critical level filtering and saturation in the lower atmosphere. GW focusing effects occur around jet cores, and ray-tube effects appear where the polar stratospheric jets vary substantially in space and time. Enhancement of the structure of zonal wavenumber 2 in pseudomomentum fluxes in the middle stratosphere begins from the early stage of the SSW evolution. An increase in pseudomomentum fluxes in the upper atmosphere is present even after the onset in the 4D. Significantly enhanced pseudomomentum fluxes, when the polar vortex is disturbed, are related to GWs with small intrinsic group velocity (wave capture), and they would change nonlocally nearby large-scale vortex structures without substantially changing local mean flows.</p>


2020 ◽  
Author(s):  
Tarique Adnan Siddiqui ◽  
Yosuke Yamazaki ◽  
Claudia Stolle

<p>It is now well accepted that the ionosphere and thermosphere are sensitive to forcing from the lower atmosphere (troposphere-stratosphere) owing mainly to the progress that have been made in the last decade in understanding the vertical coupling mechanisms connecting these two distinct atmospheric regions. In this regard, the studies linking the upper atmosphere (mesosphere-lower thermosphere-ionosphere) variability due to sudden stratospheric warming (SSW) events have been particularly important. The change of stratospheric circulation due to SSW events modulate the spectrum of vertically upward propagating atmospheric waves (gravity waves, tides, and planetary waves) resulting in numerous changes in the state of the upper atmosphere. Much of our understanding about the upper atmospheric variability associated due to the SSWs events have been gained by studying the 2008/2009 SSW event, which occurred under extremely low solar flux conditions. Recently another SSW event in 2018/2019 occurred under similar low solar flux conditions. In this study we simulate both these SSW events using Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X) and present the findings by comparing the ionospheric and thermospheric response to both these SSW events. The tidal characteristics of the semidiurnal solar and lunar tides and the thermospheric composition for both these SSW events are compared and the causes of varying responses are investigated.</p>


2009 ◽  
Vol 66 (1) ◽  
pp. 173-186 ◽  
Author(s):  
H-L. Liu ◽  
F. Sassi ◽  
R. R. Garcia

Abstract It has been well established that the atmosphere is chaotic by nature and thus has a finite limit of predictability. The chaotic divergence of initial conditions and the predictability are explored here in the context of the whole atmosphere (from the ground to the thermosphere) using the NCAR Whole Atmosphere Community Climate Model (WACCM). From ensemble WACCM simulations, it is found that the early growth of differences in initial conditions is associated with gravity waves and it becomes apparent first in the upper atmosphere and progresses downward. The differences later become more profound on increasingly larger scales, and the growth rates of the differences change in various atmospheric regions and with seasons—corresponding closely with the strength of planetary waves. For example, in December–February the growth rates are largest in the northern and southern mesosphere and lower thermosphere and in the northern stratosphere, while smallest in the southern stratosphere. The growth rates, on the other hand, are not sensitive to the altitude where the small differences are introduced in the initial conditions or the physical nature of the differences. Furthermore, the growth rates in the middle and upper atmosphere are significantly reduced if the lower atmosphere is regularly reinitialized, and the reduction depends on the frequency and the altitude range of the reinitialization.


2021 ◽  
Vol 39 (1) ◽  
pp. 267-276
Author(s):  
Olga S. Zorkaltseva ◽  
Roman V. Vasilyev

Abstract. In this paper, we study the response of the mesosphere–lower thermosphere (MLT) to sudden stratospheric warmings (SSWs) and the activity of planetary waves (PWs). We observe the 557.7 nm optical emission to retrieve the MLT wind and temperature with the only Fabry–Perot interferometer (FPI) in Russia. The FPI is located at the mid latitudes of eastern Siberia within the Tory Observatory (TOR) at the Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences (ISTP SB RAS, 51.8∘ N, 103.1∘ E). Regular interferometer monitoring started in December 2016. Here, we address the temporal variations in the 557.7 nm emission intensity as well as the variations in wind and temperature measured during the 2016–2020 winters. Both SSWs and PWs appear to have equally strong effects in the upper atmosphere. When the 557.7 nm emission decreases due to some influences from below (SSWs or PWs), the temperature increases significantly, as does its variability. The dispersion of zonal wind does not show significant PW- and SSW-correlated variations, but the dominant MLT zonal wind reverses during major SSW events simultaneously with the averaged zonal wind at 60∘ N in the stratosphere.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Hao Cheng ◽  
Kaiming Huang ◽  
Alan Z. Liu ◽  
Shaodong Zhang ◽  
Chunming Huang ◽  
...  

AbstractUsing meteor radar, radiosonde observations and MERRA-2 reanalysis data from 12 August to 31 October 2006, we report a dynamical coupling from the tropical lower atmosphere to the mesosphere and lower thermosphere through a quasi-27-day intraseasonal oscillation (ISO). It is interesting that the quasi-27-day ISO is observed in the troposphere, stratopause and mesopause regions, exhibiting a three-layer structure. In the MLT, the amplitude in the zonal wind increases from about 4 ms−1 at 90 km to 15 ms−1 at 100 km, which is different from previous observations that ISOs occurs generally in winter with an amplitude peak at about 80–90 km, and then are rapidly weakened with increasing height. Outgoing longwave radiation (OLR) and specific humidity demonstrate that there is a quasi-27-day periodicity in convective activity in the tropics, which causes the ISO of the zonal wind and gravity wave (GW) activity in the troposphere. The upward propagating GWs are further modulated by the oscillation in the troposphere and upper stratosphere. As the GWs propagate to the MLT, the quasi-27-day oscillation in the wind field is induced with a clear phase opposite to that in the lower atmosphere through instability and dissipation of these modulated GWs. Wavelet analysis shows that the quasi-27-day variability in the MLT appears as a case event rather than a persistent phenomenon, and has not a clear corresponding relation with the solar rotation effect within 1 year of observations.


2012 ◽  
Vol 30 (12) ◽  
pp. 1623-1631 ◽  
Author(s):  
M. V. Rokade ◽  
R. Kondala Rao ◽  
S. S. Nikte ◽  
R. N. Ghodpage ◽  
P. T. Patil ◽  
...  

Abstract. Simultaneous observations of the mean zonal winds at 88 km obtained by the medium-frequency (MF) radars at Kolhapur (16.8° N, 74.2° E) and Tirunelveli (8.7° N, 77.8° E) have been used to study the intraseasonal oscillation (ISO) in the MLT region. The influences of the intraseasonal variations in the lower tropospheric convective activity associated with the Madden-Julian oscillations on the latitudinal behavior of intraseasonal oscillations (ISO) of the zonal winds in the equatorial mesosphere and lower thermosphere (MLT) have been studied. The ISO activity in the lower tropospheric convective activity is examined by employing outgoing long wave radiation (OLR) as a proxy for deep convective activity occurring in the tropical lower atmosphere. The ISO activity in the zonal wind over TIR is more correlated with that in the convective activity compared to the ISO over KOL. The latitudinal and temporal variabilities of the ISO in MLT zonal winds are explained in terms of the intraseasonal variabilities in the convective activity.


2019 ◽  
Vol 9 ◽  
pp. A39 ◽  
Author(s):  
Maxim V. Klimenko ◽  
Vladimir V. Klimenko ◽  
Fedor S. Bessarab ◽  
Timofei V. Sukhodolov ◽  
Pavel A. Vasilev ◽  
...  

We apply the Entire Atmosphere GLobal (EAGLE) model to investigate the upper atmosphere response to the January 2009 sudden stratospheric warming (SSW) event. The model successfully reproduces neutral temperature and total electron content (TEC) observations. Using both model and observational data, we identify a cooling in the tropical lower thermosphere caused by the SSW. This cooling affects the zonal electric field close to the equator, leading to an enhanced vertical plasma drift. We demonstrate that along with a SSW-related wind disturbance, which is the main source to form a dynamo electric field in the ionosphere, perturbations of the ionospheric conductivity also make a significant contribution to the formation of the electric field response to SSW. The post-sunset TEC enhancement and pre-sunrise electron content reduction are revealed as a response to the 2009 SSW. We show that at post-sunset hours the SSW affects low-latitude TEC via a disturbance of the meridional electric field. We also show that the phase change of the semidiurnal migrating solar tide (SW2) in the neutral wind caused by the 2009 SSW at the altitude of the dynamo electric field generation has a crucial importance for the SW2 phase change in the zonal electric field. Such changes lead to the appearance of anomalous diurnal variability of the equatorial electromagnetic plasma drift and subsequent low-latitudinal TEC disturbances in agreement with available observations. Plain Language Summary – Entire Atmosphere GLobal model (EAGLE) interactively calculates the troposphere, stratosphere, mesosphere, thermosphere, and plasmasphere–ionosphere system states and their response to various natural and anthropogenic forcing. In this paper, we study the upper atmosphere response to the major sudden stratospheric warming that occurred in January 2009. Our results agree well with the observed evolution of the neutral temperature in the upper atmosphere and with low-latitude ionospheric disturbances over America. For the first time, we identify an SSW-related cooling in the tropical lower thermosphere that, in turn, could provide additional information for understanding the mechanisms for the generation of electric field disturbances observed at low latitudes. We show that the SSW-related vertical electromagnetic drift due to electric field disturbances is a key mechanism for interpretation of an observed anomalous diurnal development of the equatorial ionization anomaly during the 2009 SSW event. We demonstrate that the link between thermospheric winds and the ionospheric dynamo electric field during the SSW is attained through the modulation of the semidiurnal migrating solar tide.


Sign in / Sign up

Export Citation Format

Share Document