scholarly journals Analysis of large-scale UHF-RFID use-cases utilizing full-wave simulation techniques

2021 ◽  
Vol 19 ◽  
pp. 127-137
Author(s):  
Miroslav Lach ◽  
Christian Looschen ◽  
Erwin Biebl

Abstract. UHF-RFID is a mature and widespread technology that has the potential to increase the reliability and efficiency of processes in logistics and production environments. However, complex interference effects in indoor environments pose challenges to the implementation of reliable wireless communication systems like RFID. This work proposes a method for tag performance evaluation utilizing a coherent two-stage rating process. This enables the abstraction of physical quantities and facilitates the interpretation of tag readability. For this purpose, two well-established full-wave techniques are utilized to perform deterministic simulations of a logistical UHF-RFID use-case. The setup of large-scale simulation environments is discussed and important quantities to be considered in RFID-systems are derived. Based on the simulation results and the proposed rating method, the RFID use-case is evaluated. Results are visualized in full-3D, facilitating the identification of critical spots. Furthermore, a subsequent cross-validation of the simulation results is performed, verifying the validity of the simulation results. By performing a priori propagation analysis, issues can effectively be revealed beforehand and costly modifications after system deployment can be avoided.

2018 ◽  
Vol 56 (1) ◽  
pp. 102 ◽  
Author(s):  
Nguyen Huu Trung ◽  
Doan Thanh Binh

This paper proposes a novel Large-scale (massive) Multi-input Multi-output Multi-carrier Code division multiple access (LS MIMO MC-CDMA) model and application to Fifth-Generation Mobile Communication Systems (5G). This system uses combined cylindrical array antenna multiple beamforming architecture with spatial multiplexing. The model is optimized by Min-Max criteria in order to minimize side lobes and maximize compression of propagation loss. The Monte Carlo simulation results unify with the analytical solution for system performance.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Xiuwei Xuan ◽  
Lianrong Lv ◽  
Kun Li

A miniaturized meandered dipole antenna for UHF RFID tag is proposed. Different resonance frequencies and impedance can be achieved by adjusting the number of the meanders, which can help to reduce the size of the antenna. Due to the radiation patches, the input impedance of the antenna can be flexibly tuned in a large scale. The proposed antenna is printed on polyethylene (PET) substrate with a total volume of 48 mm × 13.7 mm × 0.5 mm. Modeling and simulation results show that the reflection coefficient of the antenna is less than −15 dB at 860–960 MHz. Experimental studies demonstrate that the minimum threshold power of the antenna is between 23 and 26 dBm and the measured read range is 3-4 m.


Author(s):  
Letícia Carneiro de Souza ◽  
Celso Henrique de Souza Lopes ◽  
Rita de Cassia Carlleti dos Santos ◽  
Arismar Cerqueira Sodré Junior ◽  
Luciano Leonel Mendes

The millimeter-waves band will enable multi-gigabit data transmission due to the large available bandwidth and it is a promising solution for the spectrum scarcity below 6 GHz in future generations of mobile networks. In particular, the 60 GHz band will play a crucial role in providing high-capacity data links for indoor applications. In this context, this tutorial presents a comprehensive review of indoor propagation models operating in the 60 GHz band, considering the main scenarios of interest. Propagation mechanisms such as reflection, diffraction, scattering, blockage, and material penetration, as well as large-scale path loss, are discussed in order to obtain a channel model for 60 GHz signals in indoor environments. Finally, comparisons were made using data obtained from a measurement campaign available in the literature in order to emphasize the importance of developing accurate channel models for future wireless communication systems operating in millimeter-waves bands.


Author(s):  
Kamal Hamid ◽  
Nadim Chahine

Wireless communications became one of the most widespread means for transferring information. Speed and reliability in transferring the piece of information are considered one of the most important requirements in communication systems in general. Moreover, Quality and reliability in any system are considered the most important criterion of the efficiency of this system in doing the task it is designed to do and its ability for satisfactory performance for a certain period of time, Therefore, we need fault tree analysis in these systems in order to determine how to detect an error or defect when happening in communication system and what are the possibilities that make this error happens. This research deals with studying TETRA system components, studying the physical layer in theory and practice, as well as studying fault tree analysis in this system, and later benefit from this study in proposing improvements to the structure of the system, which led to improve gain in Link Budget. A simulation and test have been done using MATLAB, where simulation results have shown that the built fault tree is able to detect the system’s work by 82.4%.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Y. Song ◽  
H. Chun

AbstractVolatile organic compounds (VOCs) are secondary pollutant precursors having adverse impacts on the environment and human health. Although VOC emissions, their sources, and impacts have been investigated, the focus has been on large-scale industrial sources or indoor environments; studies on relatively small-scale enterprises (e.g., auto-repair workshops) are lacking. Here, we performed field VOC measurements for an auto-repair painting facility in Korea and analyzed the characteristics of VOCs emitted from the main painting workshop (top coat). The total VOC concentration was 5069–8058 ppb, and 24–35 species were detected. The VOCs were mainly identified as butyl acetate, toluene, ethylbenzene, and xylene compounds. VOC characteristics differed depending on the paint type. Butyl acetate had the highest concentration in both water- and oil-based paints; however, its concentration and proportion were higher in the former (3256 ppb, 65.5%) than in the latter (2449 ppb, 31.1%). Comparing VOC concentration before and after passing through adsorption systems, concentrations of most VOCs were lower at the outlets than the inlets of the adsorption systems, but were found to be high at the outlets in some workshops. These results provide a theoretical basis for developing effective VOC control systems and managing VOC emissions from auto-repair painting workshops.


Nanophotonics ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Wei Shi ◽  
Ye Tian ◽  
Antoine Gervais

AbstractThe tremendous growth of data traffic has spurred a rapid evolution of optical communications for a higher data transmission capacity. Next-generation fiber-optic communication systems will require dramatically increased complexity that cannot be obtained using discrete components. In this context, silicon photonics is quickly maturing. Capable of manipulating electrons and photons on the same platform, this disruptive technology promises to cram more complexity on a single chip, leading to orders-of-magnitude reduction of integrated photonic systems in size, energy, and cost. This paper provides a system perspective and reviews recent progress in silicon photonics probing all dimensions of light to scale the capacity of fiber-optic networks toward terabits-per-second per optical interface and petabits-per-second per transmission link. Firstly, we overview fundamentals and the evolving trends of silicon photonic fabrication process. Then, we focus on recent progress in silicon coherent optical transceivers. Further scaling the system capacity requires multiplexing techniques in all the dimensions of light: wavelength, polarization, and space, for which we have seen impressive demonstrations of on-chip functionalities such as polarization diversity circuits and wavelength- and space-division multiplexers. Despite these advances, large-scale silicon photonic integrated circuits incorporating a variety of active and passive functionalities still face considerable challenges, many of which will eventually be addressed as the technology continues evolving with the entire ecosystem at a fast pace.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1259
Author(s):  
Dmitry Kozlov ◽  
Irina Munina ◽  
Pavel Turalchuk ◽  
Vitalii Kirillov ◽  
Alexey Shitvov ◽  
...  

A new implementation of a beam-steering transmitarray is proposed based on the tiled array architecture. Each pixel of the transmitarray is manufactured as a standalone unit which can be hard-wired for specific transmission characteristics. A set of complementary units, providing reciprocal phase-shifts, can be assembled in a prescribed spatial phase-modulation pattern to perform beam steering and beam forming in a broad spatial range. A compact circuit model of the tiled unit cell is proposed and characterized with full-wave electromagnetic simulations. Waveguide measurements of a prototype unit cell have been carried out. A design example of a tiled 10 × 10-element 1-bit beam-steering transmitarray is presented and its performance benchmarked against the conventional single-panel, i.e., unibody, counterpart. Prototypes of the tiled and single-panel C-band transmitarrays have been fabricated and tested, demonstrating their close performance, good agreement with simulations and a weak effect of fabrication tolerances. The proposed transmitarray antenna configuration has great potential for fifth-generation (5G) communication systems.


2021 ◽  
Vol 11 (8) ◽  
pp. 3623
Author(s):  
Omar Said ◽  
Amr Tolba

Employment of the Internet of Things (IoT) technology in the healthcare field can contribute to recruiting heterogeneous medical devices and creating smart cooperation between them. This cooperation leads to an increase in the efficiency of the entire medical system, thus accelerating the diagnosis and curing of patients, in general, and rescuing critical cases in particular. In this paper, a large-scale IoT-enabled healthcare architecture is proposed. To achieve a wide range of communication between healthcare devices, not only are Internet coverage tools utilized but also satellites and high-altitude platforms (HAPs). In addition, the clustering idea is applied in the proposed architecture to facilitate its management. Moreover, healthcare data are prioritized into several levels of importance. Finally, NS3 is used to measure the performance of the proposed IoT-enabled healthcare architecture. The performance metrics are delay, energy consumption, packet loss, coverage tool usage, throughput, percentage of served users, and percentage of each exchanged data type. The simulation results demonstrate that the proposed IoT-enabled healthcare architecture outperforms the traditional healthcare architecture.


2019 ◽  
Vol 11 (16) ◽  
pp. 4424 ◽  
Author(s):  
Chunning Na ◽  
Huan Pan ◽  
Yuhong Zhu ◽  
Jiahai Yuan ◽  
Lixia Ding ◽  
...  

At present time, China’s power systems face significant challenges in integrating large-scale renewable energy and reducing the curtailed renewable energy. In order to avoid the curtailment of renewable energy, the power systems need significant flexibility requirements in China. In regions where coal is still heavily relied upon for generating electricity, the flexible operations of coal power units will be the most feasible option to face these challenges. The study first focused on the reasons why the flexible operation of existing coal power units would potentially promote the integration of renewable energy in China and then reviewed the impacts on the performance levels of the units. A simple flexibility operation model was constructed to estimate the integration potential with the existing coal power units under several different scenarios. This study’s simulation results revealed that the existing retrofitted coal power units could provide flexibility in the promotion of the integration of renewable energy in a certain extent. However, the integration potential increment of 20% of the rated power for the coal power units was found to be lower than that of 30% of the rated power. Therefore, by considering the performance impacts of the coal power units with low performances in load operations, it was considered to not be economical for those units to operate at lower than 30% of the rated power. It was believed that once the capacity share of the renewable energy had achieved a continuously growing trend, the existing coal power units would fail to meet the flexibility requirements. Therefore, it was recommended in this study that other flexible resources should be deployed in the power systems for the purpose of reducing the curtailment of renewable energy. Furthermore, based on this study’s obtained evidence, in order to realize a power system with high proportions of renewable energy, China should strive to establish a power system with adequate flexible resources in the future.


Sign in / Sign up

Export Citation Format

Share Document