scholarly journals Subjects of discussion in radiated emission measurements above 1 GHz

2008 ◽  
Vol 6 ◽  
pp. 299-301 ◽  
Author(s):  
S. Battermann ◽  
H. Garbe

Abstract. Some emission and susceptibility EMC standards already require measurements above 1 GHz or test site validations (IEC 2006, CISPR 2006). A simple assignment of the established measurement methods below 1 GHz to the frequency range above 1 GHz bears some risks. The ratio between the physical size of the equipment under test (EUT) and the wave-length rises with frequency. This increases the electrical size of the EUT. The directivity may become larger and the radiation pattern of the EUT is getting more complex which reduces the probability to detect the maximum emission with a simple planar cut scan. To analyse these effects in more detail this paper shows radiation characteristics of an exemplary EUT. The influence of a receiving antenna height scan and the angle increment of the turntable scan on the detection of the maximum of the electrical field strength will be discussed. As a result some ideas will be given to reduce the measurement time but keeping the reliability of the measurement results constant.

2008 ◽  
Vol 6 ◽  
pp. 303-306 ◽  
Author(s):  
H. Garbe ◽  
S. Battermann

Abstract. Up to now most limits for radiated emission are given as values for the electrical field strength. Battermann, 2007 has shown that the frequency range extension for radiated emission measurements above 1 GHz generates a lot of problems while performing the test on a classical test site as depicted in Fig. 1. This paper will give a motivation to use an other measurand namely the total-radiated-power than electrical field strength by using alternative test sites like reverberation chambers, TEM-waveguides, Fully Anechoic Rooms (FAR) etc. Nevertheless most of the existing standards still specify electrical field strength limits. This paper will show how to set the parameters in the given algorithm to establish a link between measured total radiated power and equivalent electrical field values.


2005 ◽  
Vol 3 ◽  
pp. 111-117 ◽  
Author(s):  
S. Battermann ◽  
F. W. Trautnitz ◽  
H. Garbe

Abstract. Standards for the validation of alternative test sites with conducting groundplane exist for the frequency range 30-1000 MHz since the end of the eighties. Recently the procedure for fully anechoic rooms (FAR) has been included in CISPR 16 after more than 10 years intensive discussion in standards committees (CENELEC, 2002; CISPR, 2004). But there are no standards available for the validation of alternative test sites above 1 GHz. The responsible working group (WG1) in CISPR/A has drawn up the 7th common draft (CD). A CDV will be published in spring 2005. The German standards committee VDE AK 767.4.1 participates in the drafting of the standard. All suggested measurement procedures proposed in the last CDs have been investigated by measurements and theoretical analysis. This contribution describes the basic ideas and problems of the validation procedure of the test site. Furthermore measurement results and numerical calculations will be presented especially for the use of omni-directional antennas.


2021 ◽  
Author(s):  
V. Khokhlov ◽  
J. Meyer ◽  
D. Ritzmann ◽  
S. Lodetti ◽  
P. S. Wright ◽  
...  

2021 ◽  
Vol 21 (4) ◽  
pp. 291-298
Author(s):  
Chandana SaiRam ◽  
Damera Vakula ◽  
Mada Chakravarthy

In this paper, a novel compact broadband antenna at UHF frequencies is presented with canonical shapes. Hemispherical, conical and cylindrical shapes have all been considered for antenna configuration. The designed antenna provides an instantaneous frequency range from 370 to 5,000 MHz with omnidirectional characteristics. The antenna was simulated in CST Microwave Studio, fabricated and evaluated; the results are presented. The simulated and measurement results are in good agreement. The antenna has voltage standing wave ratio (VSWR) ≤ 1.9:1 in 400–570 MHz, 2,530–3,740 MHz and 4,180–4,620 MHz; it has VSWR ≤ 3:1 over the operating frequency range 370–5,000 MHz and the measured gain varies from -0.6 to 4.5 dBi over the frequency band. The concept of canonical-shaped antenna elements and the incorporation of triple sleeves resulted in a reduction of the length of the antenna by 62% compared to the length of a half-wave dipole antenna designed at the lowest frequency. The antenna can be used for trans-receiving applications in wireless communication.


2017 ◽  
Vol 10 (1) ◽  
Author(s):  
N. Othman ◽  
A. Ahmad ◽  
M. A. Piramali

Demulsification is one of the key processes in emulsion liquid membrane application. This study involved the effect of electrical field on demulsification of water in oil using batch high voltage demulsifier system. This technique widely used because of its advantages of easy manipulation of applied field direction and strength, offers cost–effective separation and minimal environmental impact combined with mechanical simplicity. Influence of various values of frequency (400–1500 Hz) and voltage was studied experimentally using Alternate Current (AC) High Voltage Demulsifier with insulated electrode. The emulsion consists of kerosene as organic phase, sulfuric acid as internal phase and span 80 (3 and 5 w/v %) as a surfactant. The effect of emulsion preparation such as homogenizer speed, internal phase and surfactant concentrations on the stability of water–in–oil emulsion was also investigated. The results showed that the attractive forces between the water droplets under an electrical field increase by raising the applied electrical field strength. Meanwhile, the time required for the emulsion to separate and coalescence under electrical field increased when the stability of emulsion increased.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Zengrui Li ◽  
Xiaole Kang ◽  
Jianxun Su ◽  
Qingxin Guo ◽  
Yaoqing (Lamar) Yang ◽  
...  

The characteristics of a novel antipodal Vivaldi antenna array mounted on a dielectric cone are presented. By employing antipodal Vivaldi antenna element, the antenna array shows ultrawide bandwidth and end-fire radiation characteristics. Our simulations show that the cone curvature has an obvious influence on the performance of the conformal antenna, in terms of both the bandwidth and the radiation patterns. The thickness and permittivity of the dielectric cone have an effect on the bandwidth of the conformal antenna. Measurement results of both single antenna and conformal antenna array show a good agreement with the simulated results. The measured conformal antenna can achieve a −10 dBS11with bandwidth of 2.2–12 GHz and demonstrate a typical end-fire radiation beam. These findings provide useful guidelines and insights for the design of wideband end-fire antennas mounted on a dielectric cone.


2020 ◽  
Vol 1 ◽  
Author(s):  
Jan-Philipp Stauffert ◽  
Florian Niebling ◽  
Marc Erich Latoschik

Latency is a key characteristic inherent to any computer system. Motion-to-Photon (MTP) latency describes the time between the movement of a tracked object and its corresponding movement rendered and depicted by computer-generated images on a graphical output screen. High MTP latency can cause a loss of performance in interactive graphics applications and, even worse, can provoke cybersickness in Virtual Reality (VR) applications. Here, cybersickness can degrade VR experiences or may render the experiences completely unusable. It can confound research findings of an otherwise sound experiment. Latency as a contributing factor to cybersickness needs to be properly understood. Its effects need to be analyzed, its sources need to be identified, good measurement methods need to be developed, and proper counter measures need to be developed in order to reduce potentially harmful impacts of latency on the usability and safety of VR systems. Research shows that latency can exhibit intricate timing patterns with various spiking and periodic behavior. These timing behaviors may vary, yet most are found to provoke cybersickness. Overall, latency can differ drastically between different systems interfering with generalization of measurement results. This review article describes the causes and effects of latency with regard to cybersickness. We report on different existing approaches to measure and report latency. Hence, the article provides readers with the knowledge to understand and report latency for their own applications, evaluations, and experiments. It should also help to measure, identify, and finally control and counteract latency and hence gain confidence into the soundness of empirical data collected by VR exposures. Low latency increases the usability and safety of VR systems.


Sign in / Sign up

Export Citation Format

Share Document