scholarly journals Statistics of sea-effect snowfall along the Finnish coastline based on regional climate model data

2020 ◽  
Vol 17 ◽  
pp. 87-104
Author(s):  
Taru Olsson ◽  
Anna Luomaranta ◽  
Kirsti Jylhä ◽  
Julia Jeworrek ◽  
Tuuli Perttula ◽  
...  

Abstract. The formation of convective sea-effect snowfall (i.e., snow bands) is triggered by cold air outbreaks over a relatively warm and open sea. Snow bands can produce intense snowfall which can last for several days over the sea and potentially move towards the coast depending on wind direction. We defined the meteorological conditions which statistically favor the formation of snow bands over the north-eastern Baltic Sea of the Finnish coastline and investigated the spatio-temporal characteristics of these snow bands. A set of criteria, which have been previously shown to be able to detect the days favoring sea-effect snowfall for Swedish coastal area, were refined for Finland based on four case study simulations, utilizing a convection-permitting numerical weather prediction (NWP) model (HARMONIE-AROME). The main modification of the detection criteria concerned the threshold for 10 m wind speed: the generally assumed threshold value of 10 m s−1 was decreased to 7 m s−1. The refined criteria were then applied to regional climate model (RCA4) data, for an 11-year time period (2000–2010). When only considering cases in Finland with onshore wind direction, we found on average 3 d yr−1 with favorable conditions for coastal sea-effect snowfall. The heaviest convective snowfall events were detected most frequently over the southern coastline. Statistics of the favorable days indicated that the lower 10 m wind speed threshold improved the representation of the frequency of snow bands. For most of the favorable snow band days, the location and order of magnitude of precipitation were closely captured, when compared to gridded observational data for land areas and weather radar reflectivity images. Lightning were observed during one third of the favorable days over the Baltic Sea area.

2017 ◽  
Author(s):  
Nils H. Schade

Abstract. Regional analyses of atmospheric conditions that may cause flooding of important transport infrastructure (railway tracks, highways/roads, rivers/channels) and subsequent adaptation measures are part of the Expertennetzwerk initiated by the German Federal Ministry of Transport and Digital Infrastructure (BMVI). As an exemplary case study, the December flood 2014 in Schleswig–Holstein, Germany, was investigated. Atmospheric conditions at the onset of the flood event are described and evaluated with respect to the general weather situation, initial wetness, and event precipitation. Predominantly persistent westerly situations directed several low pressure systems over the North Sea to Schleswig–Holstein during December 2014, accompanied by prolonged rainfall and finally a strong event precipitation in southern Schleswig–Holstein causing several inland gauges to exceed their by then maximum water levels. An additional storm surge hindering drainage of the catchments into the North and Baltic Sea could have been fatal. Results show that the antecedent precipitation index (API) is able to reflect the soil moisture conditions and, in combination with the maximum 3–day precipitation sum (R3d), to capture the two main drivers finally leading to the flood: (1) Initial wetness of north western Schleswig–Holstein, and (2) strong event precipitation in southern and eastern Schleswig–Holstein from 21–23 December while both indices exceeded their respective 5–year return periods. Further, trend analyses show that both API and R3d are increasing while regional patterns match the north eastward shift of cyclone pathways during recent years, leading to higher risk of flooding in Schleswig–Holstein. Within the Expertennetzwerk, investigations of these and further indices/drivers for earth system changes (e.g. wind surge, sea level rise, land cover changes, and others) derived from observations, reanalyses, and regional climate model data are planned for all German coastal areas: Results can be expected to lead to improved adaptation measures to floods under climate change conditions wherever catchments have to be drained and infrastructures and ecosystems may be harmed, e.g. in other Baltic Sea regions.


2022 ◽  
Vol 22 (1) ◽  
pp. 441-463
Author(s):  
Carolina Viceto ◽  
Irina V. Gorodetskaya ◽  
Annette Rinke ◽  
Marion Maturilli ◽  
Alfredo Rocha ◽  
...  

Abstract. Recently, a significant increase in the atmospheric moisture content has been documented over the Arctic, where both local contributions and poleward moisture transport from lower latitudes can play a role. This study focuses on the anomalous moisture transport events confined to long and narrow corridors, known as atmospheric rivers (ARs), which are expected to have a strong influence on Arctic moisture amounts, precipitation, and the energy budget. During two concerted intensive measurement campaigns – Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) and the Physical feedbacks of Arctic planetary boundary layer, Sea ice, Cloud and AerosoL (PASCAL) – that took place at and near Svalbard, three high-water-vapour-transport events were identified as ARs, based on two tracking algorithms: the 30 May event, the 6 June event, and the 9 June 2017 event. We explore the temporal and spatial evolution of the events identified as ARs and the associated precipitation patterns in detail using measurements from the French (Polar Institute Paul Emile Victor) and German (Alfred Wegener Institute for Polar and Marine Research) Arctic Research Base (AWIPEV) in Ny-Ålesund, satellite-borne measurements, several reanalysis products (the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA) Interim (ERA-Interim); the ERA5 reanalysis; the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2); the Climate Forecast System version 2 (CFSv2); and the Japanese 55-Year Reanalysis (JRA-55)), and the HIRHAM regional climate model version 5 (HIRHAM5). Results show that the tracking algorithms detected the events differently, which is partly due to differences in the spatial and temporal resolution as well as differences in the criteria used in the tracking algorithms. The first event extended from western Siberia to Svalbard, caused mixed-phase precipitation, and was associated with a retreat of the sea-ice edge. The second event, 1 week later, had a similar trajectory, and most precipitation occurred as rain, although mixed-phase precipitation or only snowfall occurred in some areas, mainly over the coast of north-eastern Greenland and the north-east of Iceland, and no differences were noted in the sea-ice edge. The third event showed a different pathway extending from the north-eastern Atlantic towards Greenland before turning south-eastward and reaching Svalbard. This last AR caused high precipitation amounts on the east coast of Greenland in the form of rain and snow and showed no precipitation in the Svalbard region. The vertical profiles of specific humidity show layers of enhanced moisture that were concurrent with dry layers during the first two events and that were not captured by all of the reanalysis datasets, whereas the HIRHAM5 model misrepresented humidity at all vertical levels. There was an increase in wind speed with height during the first and last events, whereas there were no major changes in the wind speed during the second event. The accuracy of the representation of wind speed by the reanalyses and the model depended on the event. The objective of this paper was to build knowledge from detailed AR case studies, with the purpose of performing long-term analysis. Thus, we adapted a regional AR detection algorithm to the Arctic and analysed how well it identified ARs, we used different datasets (observational, reanalyses, and model) and identified the most suitable dataset, and we analysed the evolution of the ARs and their impacts in terms of precipitation. This study shows the importance of the Atlantic and Siberian pathways of ARs during spring and beginning of summer in the Arctic; the significance of the AR-associated strong heat increase, moisture increase, and precipitation phase transition; and the requirement for high-spatio-temporal-resolution datasets when studying these intense short-duration events.


2018 ◽  
Vol 12 (9) ◽  
pp. 2901-2922 ◽  
Author(s):  
Rajashree Tri Datta ◽  
Marco Tedesco ◽  
Cecile Agosta ◽  
Xavier Fettweis ◽  
Peter Kuipers Munneke ◽  
...  

Abstract. Surface melting over the Antarctic Peninsula (AP) may impact the stability of ice shelves and thus the rate at which grounded ice is discharged into the ocean. Energy and mass balance models are needed to understand how climatic change and atmospheric circulation variability drive current and future melting. In this study, we evaluate the regional climate model MAR over the AP at a 10 km spatial resolution between 1999 and 2009, a period when active microwave data from the QuikSCAT mission is available. This model has been validated extensively over Greenland, has is applied here to the AP at a high resolution and for a relatively long time period (full outputs are available to 2014). We find that melting in the northeastern AP, the focus area of this study, can be initiated both by sporadic westerly föhn flow over the AP mountains and by northerly winds advecting warm air from lower latitudes. A comparison of MAR with satellite and automatic weather station (AWS) data reveals that satellite estimates show greater melt frequency, a larger melt extent, and a quicker expansion to peak melt extent than MAR in the centre and east of the Larsen C ice shelf. These differences are reduced in the north and west of the ice shelf, where the comparison with satellite data suggests that MAR is accurately capturing melt produced by warm westerly winds. MAR shows an overall warm bias and a cool bias at temperatures above 0 ∘C as well as fewer warm, strong westerly winds than reported by AWS stations located on the eastern edge of the Larsen C ice shelf, suggesting that the underestimation of melt in this region may be the product of limited eastward flow. At higher resolutions (5 km), MAR shows a further increase in wind biases and a decrease in meltwater production. We conclude that non-hydrostatic models at spatial resolutions better than 5 km are needed to better-resolve the effects of föhn winds on the eastern edges of the Larsen C ice shelf.


2016 ◽  
Author(s):  
Julia Jeworrek ◽  
Lichuan Wu ◽  
Christian Dieterich ◽  
Anna Rutgersson

Abstract. Convective snow bands develop in response to a cold air outbreak from the continent over the open water surface of lakes or seas. The comparatively warm water body triggers shallow convection due to increased heat and moisture fluxes. Strong winds can align with this convection into wind-parallel cloud bands, which appear stationary as the wind direction remains consistent for the time period of the snow band event, delivering enduring snow precipitation at the approaching coast. The statistical analysis of a dataset from an 11-year high resolution atmospheric regional climate model (RCA4) indicated 4 to 7 days a year of moderate to highly favorable conditions for the development of convective snow bands in the Baltic Sea region. The heaviest and most frequent lake effect snow was affecting the regions of Gävle and Västervik (along the Swedish east coast) as well as Gdansk (along the Polish coast). However, the hourly precipitation rate is often higher in Gävle than in the Västervik region. Two case studies comparing five different RCA4 model setups have shown that the Rossby Centre atmospheric regional climate model RCA4 provides a superior representation of the sea surface with more accurate SST values when coupled to the ice-ocean model NEMO as opposed to the forcing by the ERA-40 reanalysis data. The refinement of the resolution of the atmospheric model component lead especially in horizontal direction to significant improvement on the representation of the mesoscale circulation process as well as the local precipitation rate and area by the model.


2020 ◽  
Vol 20 (23) ◽  
pp. 15061-15077
Author(s):  
Jan Karlický ◽  
Peter Huszár ◽  
Tereza Nováková ◽  
Michal Belda ◽  
Filip Švábik ◽  
...  

Abstract. Cities and urban areas are well-known for their impact on meteorological variables and thereby modification of the local climate. Our study aims to generalize the urban-induced changes in specific meteorological variables by introducing a single phenomenon – the urban meteorology island (UMI). A wide ensemble of 24 model simulations with the Weather Research and Forecasting (WRF) regional climate model and the Regional Climate Model (RegCM) on a European domain with 9 km horizontal resolution were performed to investigate various urban-induced modifications as individual components of the UMI. The results show that such an approach is meaningful, because in nearly all meteorological variables considered, statistically significant changes occur in cities. Besides previously documented urban-induced changes in temperature, wind speed and boundary-layer height, the study is also focused on changes in cloud cover, precipitation and humidity. An increase in cloud cover in cities, together with a higher amount of sub-grid-scale precipitation, is detected on summer afternoons. Specific humidity is significantly lower in cities. Further, the study shows that different models and parameterizations can have a strong impact on discussed components of the UMI. Multi-layer urban schemes with anthropogenic heat considered increase winter temperatures by more than 2 ∘C and reduce wind speed more strongly than other urban models. The selection of the planetary-boundary-layer scheme also influences the urban wind speed reduction, as well as the boundary-layer height, to the greatest extent. Finally, urban changes in cloud cover and precipitation are mostly sensitive to the parameterization of convection.


2013 ◽  
Vol 6 (3) ◽  
pp. 849-859 ◽  
Author(s):  
P. Berg ◽  
R. Döscher ◽  
T. Koenigk

Abstract. The performance of the Rossby Centre regional climate model RCA4 is investigated for the Arctic CORDEX (COordinated Regional climate Downscaling EXperiment) region, with an emphasis on its suitability to be coupled to a regional ocean and sea ice model. Large biases in mean sea level pressure (MSLP) are identified, with pronounced too-high pressure centred over the North Pole in summer of over 5 hPa, and too-low pressure in winter of a similar magnitude. These lead to biases in the surface winds, which will potentially lead to strong sea ice biases in a future coupled system. The large-scale circulation is believed to be the major reason for the biases, and an implementation of spectral nudging is applied to remedy the problems by constraining the large-scale components of the driving fields within the interior domain. It is found that the spectral nudging generally corrects for the MSLP and wind biases, while not significantly affecting other variables, such as surface radiative components, two-metre temperature and precipitation.


Sign in / Sign up

Export Citation Format

Share Document