scholarly journals Evaluating the atmospheric drivers leading to the December Flood 2014 in Schleswig-Holstein, Germany

2017 ◽  
Author(s):  
Nils H. Schade

Abstract. Regional analyses of atmospheric conditions that may cause flooding of important transport infrastructure (railway tracks, highways/roads, rivers/channels) and subsequent adaptation measures are part of the Expertennetzwerk initiated by the German Federal Ministry of Transport and Digital Infrastructure (BMVI). As an exemplary case study, the December flood 2014 in Schleswig–Holstein, Germany, was investigated. Atmospheric conditions at the onset of the flood event are described and evaluated with respect to the general weather situation, initial wetness, and event precipitation. Predominantly persistent westerly situations directed several low pressure systems over the North Sea to Schleswig–Holstein during December 2014, accompanied by prolonged rainfall and finally a strong event precipitation in southern Schleswig–Holstein causing several inland gauges to exceed their by then maximum water levels. An additional storm surge hindering drainage of the catchments into the North and Baltic Sea could have been fatal. Results show that the antecedent precipitation index (API) is able to reflect the soil moisture conditions and, in combination with the maximum 3–day precipitation sum (R3d), to capture the two main drivers finally leading to the flood: (1) Initial wetness of north western Schleswig–Holstein, and (2) strong event precipitation in southern and eastern Schleswig–Holstein from 21–23 December while both indices exceeded their respective 5–year return periods. Further, trend analyses show that both API and R3d are increasing while regional patterns match the north eastward shift of cyclone pathways during recent years, leading to higher risk of flooding in Schleswig–Holstein. Within the Expertennetzwerk, investigations of these and further indices/drivers for earth system changes (e.g. wind surge, sea level rise, land cover changes, and others) derived from observations, reanalyses, and regional climate model data are planned for all German coastal areas: Results can be expected to lead to improved adaptation measures to floods under climate change conditions wherever catchments have to be drained and infrastructures and ecosystems may be harmed, e.g. in other Baltic Sea regions.

2017 ◽  
Vol 8 (2) ◽  
pp. 405-418
Author(s):  
Nils H. Schade

Abstract. Regional analyses of atmospheric conditions that may cause flooding of important transport infrastructure (railway tracks, highways/roads, rivers/channels) and subsequent adaptation measures are part of topic 1 of the network of experts initiated by the German Federal Ministry of Transport and Digital Infrastructure (BMVI). As an example case study, the December 2014 flood in Schleswig-Holstein, Germany, was investigated. Atmospheric conditions at the onset of the flood event are described and evaluated with respect to the general weather circulation, initial wetness, and event precipitation. Persistent, predominantly westerly general weather circulations (GWCs) directed several low-pressure systems over the North Sea to Schleswig-Holstein during December 2014, accompanied by prolonged rainfall and finally a strong precipitation event in southern Schleswig-Holstein, causing several inland gauges to exceed their, by then maximum, water levels. Results show that the antecedent precipitation index (API) is able to reflect the soil moisture conditions and, in combination with the maximum 3-day precipitation sum (R3d), to capture the two main drivers finally leading to the flood: (1) the initial wetness of north-western Schleswig-Holstein and (2) strong event precipitation in southern and eastern Schleswig-Holstein from 21 to 23 December; at the same time, both indices exceeded their respective 5-year return periods. Further, trend analyses show that both API and R3d have been increasing during recent years, while regional patterns match the north-eastward shift of cyclone pathways, leading to a higher risk of flooding in Schleswig-Holstein. Within the network of experts, investigations of these and further indices/drivers for earth system changes (e.g. wind surge and sea level rise) derived from observations, reanalyses, and regional climate model data are planned for all German coastal areas. Results can be expected to lead to improved adaptation measures to floods under climate change conditions wherever catchments have to be drained and infrastructures and ecosystems may be harmed.


2020 ◽  
Vol 17 ◽  
pp. 87-104
Author(s):  
Taru Olsson ◽  
Anna Luomaranta ◽  
Kirsti Jylhä ◽  
Julia Jeworrek ◽  
Tuuli Perttula ◽  
...  

Abstract. The formation of convective sea-effect snowfall (i.e., snow bands) is triggered by cold air outbreaks over a relatively warm and open sea. Snow bands can produce intense snowfall which can last for several days over the sea and potentially move towards the coast depending on wind direction. We defined the meteorological conditions which statistically favor the formation of snow bands over the north-eastern Baltic Sea of the Finnish coastline and investigated the spatio-temporal characteristics of these snow bands. A set of criteria, which have been previously shown to be able to detect the days favoring sea-effect snowfall for Swedish coastal area, were refined for Finland based on four case study simulations, utilizing a convection-permitting numerical weather prediction (NWP) model (HARMONIE-AROME). The main modification of the detection criteria concerned the threshold for 10 m wind speed: the generally assumed threshold value of 10 m s−1 was decreased to 7 m s−1. The refined criteria were then applied to regional climate model (RCA4) data, for an 11-year time period (2000–2010). When only considering cases in Finland with onshore wind direction, we found on average 3 d yr−1 with favorable conditions for coastal sea-effect snowfall. The heaviest convective snowfall events were detected most frequently over the southern coastline. Statistics of the favorable days indicated that the lower 10 m wind speed threshold improved the representation of the frequency of snow bands. For most of the favorable snow band days, the location and order of magnitude of precipitation were closely captured, when compared to gridded observational data for land areas and weather radar reflectivity images. Lightning were observed during one third of the favorable days over the Baltic Sea area.


2018 ◽  
Author(s):  
Sonu Khanal ◽  
Nina Ridder ◽  
Hylke de Vries ◽  
Wilco Terink ◽  
Bart van den Hurk

Abstract. Many winter deep low-pressure systems passing over Western Europe have the potential to induce significant storm surge levels along the coast of the North Sea. The accompanying frontal systems lead to large rainfall amounts, which can result in river discharges exceeding critical thresholds. The risk of disruptive societal impact increases strongly if river runoff and storm-surge peak occur near-simultaneously. For the Rhine catchment and the Dutch coastal area, existing studies suggest that no such relation is present at time lags shorter than six days. Here we re-investigate the possibility of finding near-simultaneous storm surge and extreme river discharge using an extended data set derived from a storm surge model (WAQUA/DCSMv5) and two hydrological river-discharge models (SPHY and HBV96) forced with conditions from a high-resolution (0.11°/12 km) regional climate model (RACMO2) in ensemble mode (16 × 50 years). We find that the probability for finding a co-occurrence of extreme river discharge at Lobith and storm surge conditions at Hoek van Holland are up to four times higher (than random chance) for a broad range of time lags (−2 to 10 days, depending on exact threshold). This highlights that the hazard of a co-occurrence of high river discharge and coastal water levels cannot be neglected in a robust risk assessment.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1378
Author(s):  
Andreas Dobler ◽  
Julia Lutz ◽  
Oskar Landgren ◽  
Jan Erik Haugen

Precipitation on Svalbard can generally be linked to the atmospheric circulation in the Northern Atlantic. Using an automated circulation type classification, we show that weather type statistics are well represented in the Max Planck Institute Earth System Model at base resolution (MPI-ESM-LR). For a future climate projection following the Representative Concentration Pathway scenario RCP8.5, we find only small changes in the statistics. However, convection permitting simulations with the regional climate model from the Consortium for Small-scale Modeling in climate mode (COSMO-CLM) covering Svalbard at 2.5 km demonstrate an increase in precipitation for all seasons. About 74% of the increase are coming from changes under cyclonic weather situations. The precipitation changes are strongly related to differences in atmospheric conditions, while the contribution from the frequencies of weather types is small. Observations on Svalbard suggest that the general weather situation favouring heavy precipitation events is a strong south-southwesterly flow with advection of water vapour from warmer areas. This is reproduced by the COSMO-CLM simulations. In the future projections, the maximum daily precipitation amounts are further increasing. At the same time, weather types with less moisture advection towards Svalbard are becoming more important.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1494
Author(s):  
Bernardo Teufel ◽  
Laxmi Sushama

Fluvial flooding in Canada is often snowmelt-driven, thus occurs mostly in spring, and has caused billions of dollars in damage in the past decade alone. In a warmer climate, increasing rainfall and changing snowmelt rates could lead to significant shifts in flood-generating mechanisms. Here, projected changes to flood-generating mechanisms in terms of the relative contribution of snowmelt and rainfall are assessed across Canada, based on an ensemble of transient climate change simulations performed using a state-of-the-art regional climate model. Changes to flood-generating mechanisms are assessed for both a late 21st century, high warming (i.e., Representative Concentration Pathway 8.5) scenario, and in a 2 °C global warming context. Under 2 °C of global warming, the relative contribution of snowmelt and rainfall to streamflow peaks is projected to remain close to that of the current climate, despite slightly increased rainfall contribution. In contrast, a high warming scenario leads to widespread increases in rainfall contribution and the emergence of hotspots of change in currently snowmelt-dominated regions across Canada. In addition, several regions in southern Canada would be projected to become rainfall dominated. These contrasting projections highlight the importance of climate change mitigation, as remaining below the 2 °C global warming threshold can avoid large changes over most regions, implying a low likelihood that expensive flood adaptation measures would be necessary.


2021 ◽  
Author(s):  
Stefan Hagemann ◽  
Ute Daewel ◽  
Volker Matthias ◽  
Tobias Stacke

<p>River discharge and the associated nutrient loads are important factors that influence the functioning of the marine ecosystem. Lateral inflows from land carrying fresh, nutrient-rich water determine coastal physical conditions and nutrient concentration and, hence, dominantly influence primary production in the system. Since this forms the basis of the trophic food web, riverine nutrient concentrations impact the variability of the whole coastal ecosystem. This process becomes even more relevant in systems like the Baltic Sea, which is almost decoupled from the open ocean and land-borne nutrients play a major role for ecosystem productivity on seasonal up to decadal time scales.</p><p> </p><p>In order to represent the effects of climate or land use change on nutrient availability, a coupled system approach is required to simulate the transport of nutrients across Earth system compartments. This comprises their transport within the atmosphere, the deposition and human application at the surface, the lateral transport over the land surface into the ocean and their dynamics and transformation in the marine ecosystem. In our study, we combine these processes in a modelling chain within the GCOAST (Geesthacht Coupled cOAstal model SysTem) framework for the northern European region. This modelling chain comprises:</p><p> </p><ul><li>Simulation of emissions, atmospheric transport and deposition with the chemistry transport model CMAQ at 36 km grid resolution using atmospheric forcing from the coastDat3 data that have been generated with the regional climate model COSMO-CLM over Europe at 0.11° resolution using ERA-Interim re-analyses as boundary conditions</li> <li>Simulation of inert processes at the land surface with the global hydrology model HydroPy (former MPI-HM), i.e. considering total nitrogen without any chemical reactions</li> <li>Riverine transport with the Hydrological Discharge (HD) model at 0.0833° spatial resolution</li> <li>Simulation of the North Sea and Baltic Sea ecosystems with 3D coupled physical-biogeochemical NPZD-model ECOSMO II at about 10 km resolution</li> </ul><p> </p><p>We will present first results and their validation from this exercise.</p><p> </p>


2018 ◽  
Author(s):  
Ethan G. Hyland ◽  
Katharine W. Huntington ◽  
Nathan D. Sheldon ◽  
Tammo Reichgelt

Abstract. Paleogene greenhouse climate equability has long been a paradox in paleoclimate research. However, recent developments in proxy and modeling methods have suggested that strong seasonality may be a feature of at least some greenhouse periods. Here we present the first multi-proxy record of seasonal temperatures during the Paleogene from paleofloras, paleosol geochemistry, and carbonate clumped isotope thermometry in the Green River Basin (Wyoming, USA). These combined temperature records allow for the reconstruction of past seasonality in the continental interior, which shows that temperatures were warmer in all seasons during the peak early Eocene climatic optimum and that the mean annual range of temperature was high, similar to the modern value (~ 26 °C). Proxy data and downscaled Eocene regional climate model results suggest amplified seasonality during greenhouse events. Increased seasonality reconstructed for the early Eocene is similar in scope to the higher seasonal range predicted by downscaled climate model ensembles for future high-CO2 emissions scenarios. Overall, these data and model comparisons have substantial implications for understanding greenhouse climates in general, and may be important for predicting future seasonal climate regimes and their impacts in continental regions.


2021 ◽  
Author(s):  
Jonathan Meyer ◽  
Shih-Yu (Simon) Wang ◽  
Robert Gillies ◽  
Jin-Ho Yoon

<p>The western U.S. precipitation climatology simulated by the NA-CORDEX regional climate model ensembles are examined to evaluate the capability of the 0.44<sup>° </sup>and 0.22<sup>° </sup>resolution<sup></sup>ensembles to reproduce 1) the annual and semi-annual precipitation cycle of several hydrologically important western U.S. regions and 2) localized seasonality in the amount and timing of precipitation. Collectively, when compared against observation-based gridded precipitation, NA-CORDEX RCMs driven by ERA-Interim reanalysis at the higher resolution 0.22<sup>° </sup>domain resolution dramatically outperformed the 0.44<sup>°</sup> ensemble over the 1950-2005 historical periods. Furthermore, the ability to capture the annual and semi-annual modes of variability was starkly improved in the higher resolution 0.22° ensemble. The higher resolution members reproduced more consistent spatial patterns of variance featuring lower errors in magnitude—especially with respect to the winter-summer and spring-fall seasonality. A great deal of spread in model performance was found for the semi-annual cycles, although the higher-resolution ensemble exhibited a more coherent clustering of performance metrics. In general, model performance was a function of which RCM was used, while future trend scenarios seem to cluster around which GCM was downscaled.</p><p><br>Future projections of precipitation patterns from the 0.22° NA-CORDEX RCMs driven by the RCP4.5 “stabilization scenario” and the RCP8.5 “high emission” scenario were analyzed to examine trends to the “end of century” (i.e. 2050-2099) precipitation patterns. Except for the Desert Southwest’s spring season, the RCP4.5 and RCP8.5 scenarios show a consensus change towards an increase in winter and spring precipitation throughout all regions of interest with the RCP8.5 scenario containing a greater number of ensemble members simulating greater wetting trends. The future winter-summer mode of variability exhibited a general consensus towards increasing variability with greatest change found over the region’s terrain suggesting a greater year-to-year variability of the region’s orographic response to the strength and location of the mid-latitude jet streams and storm track. Increasing spring-fall precipitation variability suggests an expanding influence of tropical moisture advection associated with the North American Monsoon, although we note that like many future monsoon projections, a spring “convective barrier” was also apparent in the NA-CORDEX ensembles.</p>


Ocean Science ◽  
2009 ◽  
Vol 5 (3) ◽  
pp. 369-378 ◽  
Author(s):  
A. Sterl ◽  
H. van den Brink ◽  
H. de Vries ◽  
R. Haarsma ◽  
E. van Meijgaard

Abstract. The height of storm surges is extremely important for a low-lying country like The Netherlands. By law, part of the coastal defence system has to withstand a water level that on average occurs only once every 10 000 years. The question then arises whether and how climate change affects the heights of extreme storm surges. Published research points to only small changes. However, due to the limited amount of data available results are usually limited to relatively frequent extremes like the annual 99%-ile. We here report on results from a 17-member ensemble of North Sea water levels spaning the period 1950–2100. It was created by forcing a surge model of the North Sea with meteorological output from a state-of-the-art global climate model which has been driven by greenhouse gas emissions following the SRES A1b scenario. The large ensemble size enables us to calculate 10 000 year return water levels with a low statistical uncertainty. In the one model used in this study, we find no statistically significant change in the 10 000 year return values of surge heights along the Dutch during the 21st century. Also a higher sea level resulting from global warming does not impact the height of the storm surges. As a side effect of our simulations we also obtain results on the interplay between surge and tide.


Sign in / Sign up

Export Citation Format

Share Document