scholarly journals Full flowering phenology of apple tree (<i>Malus domestica</i>) in Pūre orchard, Latvia from 1959 to 2019

2021 ◽  
Vol 18 ◽  
pp. 93-97
Author(s):  
Gunta Kalvāne ◽  
Zane Gribuste ◽  
Andis Kalvāns

Abstract. The Pūre orchard is one of the oldest apple orchards in the Baltic, where thousands of varieties of fruit trees from throughout the world are grown and tested. Over time, a huge knowledge base has been accumulated, but most of the observational data are stored in archives in paper format. We have digitized a small part of the full flowering phenological data of apple trees (Malus domestica) over the period of 1959 to 2019 for 17 varieties of apple trees, a significant step for horticulture and agricultural economics in Latvia. Climate change has led to significant changes in the phenology of apple trees as all varieties, autumn, summer and winter, have begun to flower earlier: from 2002 to 2019, on average full flowering was recorded to have taken place around 21 May, whereas for the period 1959–1967 it occurred around 27–28 May. To develop better-quality phenological predictions and to take account of the fragmentary nature of phenological data, in our study we assessed the performance of three meteorological data sets – gridded observation data from E-OBS, ERA5-Land reanalysis data and direct observations from a distant meteorological station – in simple phenological degree-day models. In the first approximation, the gridded E-OBS data set performs best in our phenological model.

1996 ◽  
Vol 74 (4) ◽  
pp. 528-537 ◽  
Author(s):  
Martin Diekmann

The relationship between flowering phenology and meteorological measurements, in particular air temperature, was studied for 29 herbaceous species in four areas of deciduous forest near Uppsala, Sweden. Altogether 16 models were tested for their accuracy of predicting flowering. These were cumulative sum models based on the heat unit concept of an accumulation of (modified) temperatures above a threshold base temperature from a chosen starting date. Average temperature was tested as an alternative method. All models were first applied to a data set from the years 1990 to 1992 and then to an independent test data set from 1993. The accumulation of daily mean air temperatures (degree-days) above 5 °C from January 1 was chosen as the basic reference model. Despite its simplicity, it was a very accurate model in predicting flowering for these species. Only two models were superior to the reference model in both data sets: the summation of degree hours instead of degree-days from optimized starting dates for each species, and the addition of photoperiod (daylength) to daily mean temperature. In general, the models performed better for the late-flowering species than for the early-flowering species. The accuracy of the models was partly dependent on the actual course of temperature accumulation in a year. Keywords: degree-days, full flowering, photoperiod, solar radiation, temperature sum.


2021 ◽  
Author(s):  
AHMET IRVEM ◽  
Mustafa OZBULDU

Abstract Evapotranspiration is an important parameter for hydrological, meteorological and agricultural studies. However, the calculation of actual evapotranspiration is very challenging and costly. Therefore, Potential Evapotranspiration (PET) is typically calculated using meteorological data to calculate actual evapotranspiration. However, it is very difficult to get complete and accurate data from meteorology stations in, rural and mountainous regions. This study examined the availability of the Climate Forecast System Reanalysis (CFSR) reanalysis data set as an alternative to meteorological observation stations in the computation of potential annual and seasonal evapotranspiration. The PET calculations using the CFSR reanalysis dataset for the period 1987-2017 were compared to data observed at 259 weather stations observed in Turkey. As a result of the assessments, it was determined that the seasons in which the CFSR reanalysis data set had the best prediction performance were the winter (C'= 0.76 and PBias = -3.77) and the autumn (C' = 0.75 and PBias = -12.10). The worst performance was observed for the summer season. The performance of the annual prediction was determined as C'= 0.60 and PBias = -15.27. These findings indicate that the results of the PET calculation using the CFSR reanalysis data set are relatively successful for the study area. However, the data should be evaluated with observation data before being used especially in the summer models.


2014 ◽  
Vol 14 (12) ◽  
pp. 6177-6194 ◽  
Author(s):  
R. L. Thompson ◽  
K. Ishijima ◽  
E. Saikawa ◽  
M. Corazza ◽  
U. Karstens ◽  
...  

Abstract. This study examines N2O emission estimates from five different atmospheric inversion frameworks based on chemistry transport models (CTMs). The five frameworks differ in the choice of CTM, meteorological data, prior uncertainties and inversion method but use the same prior emissions and observation data set. The posterior modelled atmospheric N2O mole fractions are compared to observations to assess the performance of the inversions and to help diagnose problems in the modelled transport. Additionally, the mean emissions for 2006 to 2008 are compared in terms of the spatial distribution and seasonality. Overall, there is a good agreement among the inversions for the mean global total emission, which ranges from 16.1 to 18.7 TgN yr−1 and is consistent with previous estimates. Ocean emissions represent between 31 and 38% of the global total compared to widely varying previous estimates of 24 to 38%. Emissions from the northern mid- to high latitudes are likely to be more important, with a consistent shift in emissions from the tropics and subtropics to the mid- to high latitudes in the Northern Hemisphere; the emission ratio for 0–30° N to 30–90° N ranges from 1.5 to 1.9 compared with 2.9 to 3.0 in previous estimates. The largest discrepancies across inversions are seen for the regions of South and East Asia and for tropical and South America owing to the poor observational constraint for these areas and to considerable differences in the modelled transport, especially inter-hemispheric exchange rates and tropical convective mixing. Estimates of the seasonal cycle in N2O emissions are also sensitive to errors in modelled stratosphere-to-troposphere transport in the tropics and southern extratropics. Overall, the results show a convergence in the global and regional emissions compared to previous independent studies.


Aerobiologia ◽  
2021 ◽  
Author(s):  
Dorota Myszkowska ◽  
Katarzyna Piotrowicz ◽  
Monika Ziemianin ◽  
Maximilian Bastl ◽  
Uwe Berger ◽  
...  

Abstract In 2016, the highest birch (Betula spp.) pollen concentrations were recorded in Kraków (Poland) since the beginning of pollen observations in 1991. The aim of this study was to ascertain the reason for this phenomenon, taking the local sources of pollen in Poland and long-range transport (LRT) episodes associated with the pollen influx from other European countries into account. Three periods of higher pollen concentrations in Kraków in 2016 were investigated with the use of pollen data, phenological data, meteorological data and the HYSPLIT numerical model to calculate trajectories up to 4 days back (96 h) at the selected Polish sites. From 5 to 8 April, the birch pollen concentrations increased in Kraków up to 4000 Pollen/m3, although no full flowering of birch trees in the city was observed. The synoptic situation with air masses advection from the South as well as backward trajectories and the general birch pollen occurrence in Europe confirm that pollen was transported mainly from Serbia, Hungary, Austria, the Czech Republic, Slovakia, into Poland. The second analyzed period (13–14 April) was related largely to the local flowering of birches, while the third one in May (6–7 May) mostly resulted from the birch pollen transport from Fennoscandia and the Baltic countries. Unusual high pollen concentrations at the beginning of the pollen season can augment the symptomatic burden of birch pollen allergy sufferers and should be considered during therapy. Such incidents also affect the estimation of pollen seasons timing and severity. Graphical Abstract


2000 ◽  
Vol 151 (10) ◽  
pp. 385-397
Author(s):  
Bernard Primault

Many years ago, a model was elaborated to calculate the«beginning of the vegetation's period», based on temperatures only (7 days with +5 °C temperature or more). The results were correlated with phenological data: the beginning of shoots with regard to spruce and larch. The results were not satisfying, therefore, the value of the two parameters of the first model were modified without changing the second one. The result, however, was again not satisfying. Research then focused on the influence of cumulated temperatures over thermal thresholds. Nevertheless, the results were still not satisfying. The blossoming of fruit trees is influenced by the mean temperature of a given period before the winter solstice. Based on this knowledge, the study evaluated whether forest trees could also be influenced by temperature or sunshine duration of a given period in the rear autumn. The investigation was carried through from the first of January on as well as from the date of snow melt of the following year. In agricultural meteorology, the temperature sums are often interrelated with the sunshine duration, precipitation or both. However,the results were disappointing. All these calculations were made for three stations situated between 570 and 1560 m above sea-level. This allowed to draw curves of variation of the two first parameters (number of days and temperature) separately for each species observed. It was finally possible to specify the thus determined curves with data of three other stations situated between the first ones. This allows to calculate the flushing of the two tree species, if direct phenological observation is lacking. This method, however, is only applicable for the northern part of the Swiss Alps.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 367
Author(s):  
Mateja Kišek ◽  
Kristjan Jarni ◽  
Robert Brus

This study focuses on the morphological and genetic characteristics of European crab apple (Malus sylvestris (L.) Mill.) and the occurrence of hybrids in its populations. We analyzed a total of 107 putative European crab apple trees in Slovenia: 92 from nine natural populations, five from a seed stand and 10 from a stand of unnatural origin. We also included 18 domesticated apple trees (Malus × domestica Borkh.) and two Japanese flowering crab apple trees (Malusfloribunda van Houtte) as outliers. The trees were classified into groups of European crab apples, hybrids and domesticated apples according to their morphological and genetic characteristics. Classification based on morphological traits produced different results (58.75% European crab apple, 37.11% hybrids and 4.14% domesticated apple) compared to those based on genetic analysis (70.10% European crab apple, 21.64% hybrids and 8.26% domesticated apple). When genetic and morphological characteristics were combined, only 40.20% of the trees were classified as European crab apple, and an additional group of feral cultivars of domesticated apples (6.18%) was identified. The analysis revealed that hybridization with domesticated apple is taking place in all studied natural European crab apple populations; however, hybrids and feral cultivars only occur to a limited extent. When introducing European crab apple into forests in the future, only genetically verified forest reproductive material obtained exclusively from suitable seed stands should be used.


2017 ◽  
Vol 28 (4) ◽  
pp. 5-9 ◽  
Author(s):  
Anna Matwiejuk

Abstract The aim of this paper is to present the diversity of the lichen species on fruit trees (Malus sp., Pyrus sp., Prunus sp. and Cerasus sp.) growing in orchards in selected villages and towns in the Podlaskie Voivodeship. Fifty-six species of lichens were found. These were dominated by common lichens found on the bark of trees growing in built-up areas with prevailing heliophilous and nitrophilous species of the genera Physcia and Phaeophyscia. A richer lichen biota is characteristic of apple trees (52 species) and pear trees (36). Lichens of the apple trees constitute 78% of the biota of this phorophyte growing in the fruit orchards in Poland. Of the recorded species, only two (Ramalina farinacea, Usnea hirta) are covered by partial protection in Poland.


Agromet ◽  
2011 ◽  
Vol 25 (1) ◽  
pp. 24
Author(s):  
Satyanto Krido Saptomo

<em>Artificial neural network (ANN) approach was used to model energy dissipation process into sensible heat and latent heat (evapotranspiration) fluxes. The ANN model has 5 inputs which are leaf temperature T<sub>l</sub>, air temperature T<sub>a</sub>, net radiation R<sub>n</sub>, wind speed u<sub>c</sub> and actual vapor pressure e<sub>a</sub>. Adjustment of ANN was conducted using back propagation technique, employing measurement data of input and output parameters of the ANN. The estimation results using the adjusted ANN shows its capability in resembling the heat dissipation process by giving outputs of sensible and latent heat fluxes closed to its respective measurement values as the measured input values are given.  The ANN structure presented in this paper suits for modeling similar process over vegetated surfaces, but the adjusted parameters are unique. Therefore observation data set for each different vegetation and adjustment of ANN are required.</em>


Sign in / Sign up

Export Citation Format

Share Document