scholarly journals Ammonia emissions from deciduous forest after leaf fall

2013 ◽  
Vol 10 (7) ◽  
pp. 4577-4589 ◽  
Author(s):  
K. Hansen ◽  
L. L. Sørensen ◽  
O. Hertel ◽  
C. Geels ◽  
C. A. Skjøth ◽  
...  

Abstract. The understanding of biochemical feedback mechanisms in the climate system is lacking knowledge in relation to bi-directional ammonia (NH3) exchange between natural ecosystems and the atmosphere. We therefore study the atmospheric NH3 fluxes during a 25-day period during autumn 2010 (21 October to 15 November) for the Danish beech forest Lille Bøgeskov to address the hypothesis that NH3 emissions occur from deciduous forests in relation to leaf fall. This is accomplished by using observations of vegetation status, NH3 fluxes and model calculations. Vegetation status was observed using plant area index (PAI) and leaf area index (LAI). NH3 fluxes were measured using the relaxed eddy accumulation (REA) method. The REA-based NH3 concentrations were compared to NH3 denuder measurements. Model calculations of the atmospheric NH3 concentration were obtained with the Danish Ammonia MOdelling System (DAMOS). The relative contribution from the forest components to the atmospheric NH3 flux was assessed using a simple two-layer bi-directional canopy compensation point model. A total of 57.7% of the fluxes measured showed emission and 19.5% showed deposition. A clear tendency of the flux going from deposition of −0.25 ± 0.30 μg NH3-N m−2 s−1 to emission of up to 0.67 ± 0.28 μg NH3-N m−2 s−1 throughout the measurement period was found. In the leaf fall period (23 October to 8 November), an increase in the atmospheric NH3 concentrations was related to the increasing forest NH3 flux. Following leaf fall, the magnitude and temporal structure of the measured NH3 emission fluxes could be adequately reproduced with the bi-directional resistance model; it suggested the forest ground layer (soil and litter) to be the main contributing component to the NH3 emissions. The modelled concentration from DAMOS fits well the measured concentrations before leaf fall, but during and after leaf fall, the modelled concentrations are too low. The results indicate that the missing contribution to atmospheric NH3 concentration from vegetative surfaces related to leaf fall are of a relatively large magnitude. We therefore conclude that emissions from deciduous forests are important to include in model calculations of atmospheric NH3 for forest ecosystems. Finally, diurnal variations in the measured NH3 concentrations were related to meteorological conditions, forest phenology and the spatial distribution of local anthropogenic NH3 sources. This suggests that an accurate description of ammonia fluxes over forest ecosystems requires a dynamic description of atmospheric and vegetation processes.

2012 ◽  
Vol 9 (11) ◽  
pp. 15633-15665
Author(s):  
K. Hansen ◽  
L. L. Sørensen ◽  
O. Hertel ◽  
C. Geels ◽  
C. A. Skjøth ◽  
...  

Abstract. The understanding of biochemical feed-back mechanisms in the climate system is lacking knowledge in relation to bi-directional ammonia (NH3) exchange between natural ecosystems and the atmosphere. We therefore study the atmospheric NH3 fluxes during a 25 days period during autumn 2010 (21 October–15 November) for the Danish beech forest, Lille Bøgeskov, to address the hypothesis that NH3 emissions occur from deciduous forests in relation to leaf fall. This is accomplished by using observations of vegetation status, NH3 fluxes and model calculations. Vegetation status was observed using plant area index (PAI) and leaf area index (LAI). NH3 fluxes were measured using the relaxed eddy accumulation (REA) method. The REA based NH3 concentrations were compared to NH3 denuder measurements. Model calculations were obtained with the Danish Ammonia MOdelling System (DAMOS). 57.7% of the fluxes measured showed emission and 19.5% showed deposition. The mean NH3 flux was 0.087 ± 0.19 μg NH3-N m−2 s−1. A clear tendency of the flux going from negative (deposition) to positive (emission) fluxes of up to 0.96 ± 0.40 μg NH3-N m−2 s−1 throughout the measurement period was found. In the leaf fall period (23 October–8 November), an increase in the atmospheric NH3 concentrations was related to the increasing forest NH3 flux. The modelled concentration from DAMOS fits well the measured concentrations before leaf fall. During and after leaf fall, the modelled concentrations are too low. The results indicate that the missing contribution to atmospheric NH3 concentration from vegetative surfaces related to leaf fall are of a relatively large magnitude. We therefore conclude that emissions from deciduous forests are important to include in model calculations of atmospheric NH3 for forest ecosystems. Finally, diurnal variations in the measured NH3 concentrations were related to meteorological conditions, forest phenology and the spatial distribution of local anthropogenic NH3 sources. This suggests that an accurate description of ammonia fluxes over forest ecosystems requires a dynamic description of atmospheric and vegetation processes.


2021 ◽  
Vol 13 (14) ◽  
pp. 2806
Author(s):  
Kevin Bórnez ◽  
Aleixandre Verger ◽  
Adrià Descals ◽  
Josep Peñuelas

Monitoring the phenological responses of deciduous forests to climate is important, due to the increasing frequency and intensity of extreme climatic events associated with climate change and global warming, which will in turn affect vegetation seasonality. We investigated the spatiotemporal patterns of the response of deciduous forests to climatic anomalies in the Northern Hemisphere, using satellite-derived phenological metrics from the Copernicus Global Land Service Leaf Area Index, and multisource climatic datasets for 2000–2018 at resolutions of 0.1°. Thereafter, we assessed the impact of extreme heatwaves and droughts on this deciduous forest phenology. We assumed that changes in the deciduous forest phenology in the Northern Hemisphere for the period 2000–2018 were monotonic, and that temperature and precipitation were the main climatic drivers. Analyses of partial correlations of phenological metrics with the timing of the start of the season (SoS), end of the season (EoS), and climatic variables indicated that changes in preseason temperature played a stronger role than precipitation in affecting the interannual variability of SoS anomalies: the higher the temperature, the earlier the SoS in most deciduous forests in the Northern Hemisphere (mean correlation coefficient of –0.31). Correlations between the SoS and temperature were significantly negative in 57% of the forests, and significantly positive in 15% of the forests (P < 0.05). Both temperature and precipitation contributed to the advance and delay of the EoS. A later EoS was significantly correlated with a positive Standardized Precipitation Evapotranspiration Index (SPEI) at the regional scale (~30% of deciduous forests). The timings of the EoS and SoS shifted by > 20 d in response to heatwaves throughout most of Europe in 2003, and in the United States of America in 2012. This study contributes to improve our understanding of the phenological responses of deciduous forests in the Northern Hemisphere to climate change and extreme climate events.


2020 ◽  
Vol 17 (23) ◽  
pp. 5939-5952
Author(s):  
Johan Arnqvist ◽  
Julia Freier ◽  
Ebba Dellwik

Abstract. We present a new algorithm for the estimation of the plant area density (PAD) profiles and plant area index (PAI) for forested areas based on data from airborne lidar. The new element in the algorithm is to scale and average returned lidar intensities for each lidar pulse, whereas other methods do not use the intensity information at all, use only average intensity values, or do not scale the intensity information, which can cause problems for heterogeneous vegetation. We compare the performance of the new algorithm to three previously published algorithms over two contrasting types of forest: a boreal coniferous forest with a relatively open structure and a dense beech forest. For the beech forest site, both summer (full-leaf) and winter (bare-tree) scans are analyzed, thereby testing the algorithm over a wide spectrum of PAIs. Whereas all tested algorithms give qualitatively similar results, absolute differences are large (up to 400 % for the average PAI at one site). A comparison with ground-based estimates shows that the new algorithm performs well for the tested sites. Specific weak points regarding the estimation of the PAD from airborne lidar data are addressed including the influence of ground reflections and the effect of small-scale heterogeneity, and we show how the effect of these points is reduced in the new algorithm, by combining benefits of earlier algorithms. We further show that low-resolution gridding of the PAD will lead to a negative bias in the resulting estimate according to Jensen's inequality for convex functions and that the severity of this bias is method dependent. As a result, the PAI magnitude as well as heterogeneity scales should be carefully considered when setting the resolution for the PAD gridding of airborne lidar scans.


2020 ◽  
Author(s):  
Johan Arnqvist ◽  
Julia Freier ◽  
Ebba Dellwik

Abstract. We present a new algorithm for the estimation of plant area density (PAD) profiles and plant area index (PAI) for forested areas based on data from airborne lidar. The new element in the algorithm is to scale and average returned lidar intensities for each lidar pulse, whereas other methods either do not use the intensity information at all, only use average intensity values or do not scale the intensity information, which can cause problems for heterogeneous vegetation. We compare the performance of the new and three previously published algorithms over two contrasting types of forest: a boreal coniferous forest with a relatively open structure and a dense beech forest. For the beech forest site, both summer (full leaf) and winter (bare trees) scans are analyzed, thereby testing the algorithm over a wide spectrum of PAIs. Whereas all tested algorithms give qualitatively similar results, absolute differences are large (up to 400 % for the average PAI at one site). A comparison with ground-based estimates shows that the new algorithm performs well for the tested sites, and further and more importantly – it never produces clearly dubious results. Specific weak points for estimation of PAD from airborne lidar data are addressed; the influence of ground reflections and the effect of small-scale heterogeneity, and we show how the effect of these points is minimized using the new algorithm. We further show that low-resolution gridding of PAD will lead to a negative bias in the resulting estimate according to Jensen’s inequality for concave functions, and that the severity of this bias is method-dependent. As a result, PAI magnitude as well as heterogeneity scales should be carefully considered when setting the resolution for PAD gridding of airborne lidar scans.


2021 ◽  
Author(s):  
Mélanie Court ◽  
Gregory van der Heijden ◽  
Pascale Louvat ◽  
Emile Bolou-Bi ◽  
Guillaume Caro ◽  
...  

2005 ◽  
Vol 94 (2) ◽  
pp. 244-255 ◽  
Author(s):  
Quan Wang ◽  
Samuel Adiku ◽  
John Tenhunen ◽  
André Granier

Web Ecology ◽  
2001 ◽  
Vol 2 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Z. Elek ◽  
T. Magura ◽  
T. Tóthmérész

Abstract. The impacts of non-native Norway spruce plantation on the abundance and species richness of carabids were studied in the Bükk National Park in Hungary, central Europe. Pitfall catches from recently established (5 yr old), young (15 yr after planting), middle-aged (30 yr after planting), old Norway spruce Picea abies plantation (50 yr after planting), and a native submontane beech forest (Fagetum sylvaticae) as a control stand were compared. Our results showed that deciduous forest species decreased significantly in abundance in the plantations, and appeared in high abundance only in the native beech forest. Furthermore, open habitat species increased remarkably in abundance in the recently established plantation. Carabids were significantly more abundant and species rich in the native forest than in the plantations, while differences were not significant among the plantations. Multiple regression between the abundance and species richness of carabids and twelve environmental measurements showed that pH of the soil, herb cover and density of the carabids’ prey had a significant effect in determining abundance and species richness. Our results showed that plantation of non-native Norway spruce species had a detrimental effect on the composition of carabid communities and no regeneration could be observed during the growth of plantations even 50 yr after the establishment. This emphasises the importance of an active nature management practice to facilitate the recolonization of the native species.


2021 ◽  
Author(s):  
Gastón Mauro Díaz

1) Hemispherical photography (HP) is a long-standing tool for forest canopy characterization. Currently, there are low-cost fisheye lenses to convert smartphones into high-portable HP equipment; however, they cannot be used whenever since HP is sensitive to illumination conditions. To obtain sound results outside diffuse light conditions, a deep-learning-based system needs to be developed. A ready-to-use alternative is the multiscale color-based binarization algorithm, but it can provide moderate-quality results only for open forests. To overcome this limitation, I propose coupling it with the model-based local thresholding algorithm. I call this coupling the MBCB approach. 2) Methods presented here are part of the R package CAnopy IMage ANalysis (caiman), which I am developing. The accuracy assessment of the new MBCB approach was done with data from a pine plantation and a broadleaf native forest. 3) The coefficient of determination (R^2) was greater than 0.7, and the root mean square error (RMSE) lower than 20 %, both for plant area index calculation. 4) Results suggest that the new MBCB approach allows the calculation of unbiased canopy metrics from smartphone-based HP acquired in sunlight conditions, even for closed canopies. This facilitates large-scale and opportunistic sampling with hemispherical photography.


Sign in / Sign up

Export Citation Format

Share Document