scholarly journals Limited protection of macro-aggregate-occluded organic carbon in Siberian steppe soils

2017 ◽  
Vol 14 (10) ◽  
pp. 2627-2640 ◽  
Author(s):  
Norbert Bischoff ◽  
Robert Mikutta ◽  
Olga Shibistova ◽  
Alexander Puzanov ◽  
Marina Silanteva ◽  
...  

Abstract. Macro-aggregates especially in agricultural steppe soils are supposed to play a vital role for soil organic carbon (OC) stabilization at a decadal timescale. While most research on soil OC stabilization in steppes focused on North American prairie soils of the Great Plains with information mainly provided by short-term incubation experiments, little is known about the agricultural steppes in southwestern Siberia, though they belong to the greatest conversion areas in the world and occupy an area larger than that in the Great Plains. To quantify the proportion of macro-aggregate-protected OC under different land use as function of land use intensity and time since land use change (LUC) from pasture to arable land in Siberian steppe soils, we determined OC mineralization rates of intact (250–2000 µm) and crushed (< 250 µm) macro-aggregates in long-term incubations over 401 days (20 °C; 60 % water holding capacity) along two agricultural chronosequences in the Siberian Kulunda steppe. Additionally, we incubated bulk soil (< 2000 µm) to determine the effect of LUC and subsequent agricultural use on a fast and a slow soil OC pool (labile vs. more stable OC), as derived from fitting exponential-decay models to incubation data. We hypothesized that (i) macro-aggregate crushing leads to increased OC mineralization due to an increasing microbial accessibility of a previously occluded labile macro-aggregate OC fraction, and (ii) bulk soil OC mineralization rates and the size of the fast OC pool are higher in pasture than in arable soils with decreasing bulk soil OC mineralization rates and size of the fast OC pool as land use intensity and time since LUC increase. Against our hypothesis, OC mineralization rates of crushed macro-aggregates were similar to those of intact macro-aggregates under all land use regimes. Macro-aggregate-protected OC was almost absent and accounted for < 1 % of the total macro-aggregate OC content and to a maximum of 8 ± 4 % of mineralized OC. In accordance to our second hypothesis, highest bulk soil OC mineralization rates and sizes of the fast OC pool were determined under pasture, but mineralization rates and pool sizes were unaffected by land use intensity and time since LUC. However, at one chronosequence mean residence times of the fast and slow OC pool tended to decrease with increasing time since establishment of arable use. We conclude that the tillage-induced breakdown of macro-aggregates has not reduced the OC contents in the soils under study. The decline of OC after LUC is probably attributed to the faster soil OC turnover under arable land as compared to pasture at a reduced plant residue input.

2020 ◽  
Author(s):  
Aleksey Prays ◽  
Sonia Banze ◽  
Friedrich Jalowy ◽  
Klaus Kaiser ◽  
Robert Mikutta

&lt;p&gt;The decline in organic carbon (OC) stocks after conversion from grassland to cropland under conventional soil tillage practices was 24-32% for American prairie soils. The respective decreases in OC stocks ranged from 27% to more than 40% for steppe soils of the European part of Russia and was about 31% in semi-arid steppe soils of South Siberia. Here, we present results on the soil OC stocks in steppe soils of Northern Kazakhstan, which partly were converted to arable land over the last 60 to 90 years. We sampled soils by genetic horizons along a north-south transect, where precipitation increased towards north but negligible variation in temperature. Soil samples were analyzed for organic and inorganic carbon as well as bulk density.&lt;/p&gt;&lt;p&gt;Surprisingly, we found along the transect on average only 3.5% smaller OC stocks at 0-10 cm depth in arable than in natural soils. Even more astonishing, all arable soils tested had larger OC stocks in the layers beneath 10 cm depth than the natural steppe soils. On average, the OC stocks in 10-100 cm depth were 34% larger in soils under arable management than in natural steppe soils. We credit the enhanced deep soil accumulation of OC in arable soils of Northern Kazakhstan to colloidal translocation of OC-rich particles along vertical pores. The cause of the increased in colloidal transport under arable management is still under evaluation but appears connected to the clayey soil texture and the large abundance of expandable clay minerals. We conclude that despite of the intense land use and severe climatic conditions accumulation of subsoil carbon is possible even after many decades of cultivation history. Our findings stress the importance of considering whole soil profiles for analyzing the consequences of land use change on the net carbon balance of soils.&lt;/p&gt;


2016 ◽  
Vol 62 (1) ◽  
pp. 10-18 ◽  
Author(s):  
Gabriela Barančíková ◽  
Jarmila Makovníková ◽  
Ján Halas

Abstract The direction of changes and conversion of soil organic carbon (SOC) is in most current ecosystems influenced by human activity. Soil Science and Conservation Research Institute is responsible for monitoring the agricultural soils in a five-year cycle. One part of the soil monitoring involves the determination of the soil organic carbon (SOC) storage. Further, we followed the conversion of arable land on grassland during more than 20 years of monitoring period at some locations where changes in land use occurred. Ten places on basic network and 2 places on key monitoring localities in which arable land have been converted into grassland were identified. About 50 percent of studied soils converted into permanent grassland were Cambisols. The other converted soil types were Luvic Stagnosol, Stagnic Regosol, Mollic Fluvisol, and Stagnic Luvisol. The results showed that after the third monitoring cycle (2002), increase of SOC was observed in all the localities, with the change in land use. Statistical parameter (t-test) confirmed significant differences between the set of average SOC values before and after the land use conversion. The chemical structure of humic acids (HA) isolated from arable soil and permanent grassland indicated increasing of aliphatic carbon content in grassland HA. More aromatic and stabile were HA isolated from arable soils.


2017 ◽  
Author(s):  
Norbert Bischoff ◽  
Robert Mikutta ◽  
Olga Shibistova ◽  
Alexander Puzanov ◽  
Marina Silanteva ◽  
...  

Abstract. Macro-aggregates especially in agricultural steppe soils are supposed to play a vital role for soil organic carbon (OC) stabilization at a decadal time scale. While most research on soil OC stabilization in steppes focused on North American prairie soils of the Great Plains with information mainly provided by short-term incubation experiments, little is known about the agricultural steppes in south-western Siberia, though they belong to the greatest conversion areas in the world and occupy an area larger than that in the Great Plains. To quantify the proportion of macro-aggregate protected OC under different land-use and as function of land-use duration and intensity in Siberian steppe soils, we determined OC mineralization rates of intact (25–2000 µm) and crushed (


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


2019 ◽  
Vol 28 (1) ◽  
Author(s):  
Asta Kazlauskaite-Jadzevice ◽  
Liudmila Tripolskaja ◽  
Jonas Volungevicius ◽  
Eugenija Baksiene

Conversion of arable soils into other land uses can stabilize and increase accumulation of soil organic carbon (SOC) and in addition prevent deterioration in its properties. The data has shown changes in SOC sequestration in Ap horizon after arable land conversion (1995–2015) into managed grassland, abandoned and pine afforested. SOC in Arenosol topsoil was positively affected by long term fallow and conversion into grassland. Abandoned land and fertilised managed grassland accumulated significantly more SOC, 48% and 38% respectively compared with arable land. In unfertilised managed grassland SOC stocks decreased 2.3% during 21 years, but losses were lower than in fertilised arable land. Pine afforestation of loamy sand helped to reduce the intensity of SOM mineralization compared to arable land. The Ap horizon thickness in pine forest soil increased from 28 to 31 cm during 21 years period. However, SOC stock decreased by 1% due to reduction in carbon concentration.


2020 ◽  
Vol 17 (12) ◽  
pp. 3183-3201 ◽  
Author(s):  
Jingjing Guo ◽  
Miriam Glendell ◽  
Jeroen Meersmans ◽  
Frédérique Kirkels ◽  
Jack J. Middelburg ◽  
...  

Abstract. Soils represent the largest reservoir of organic carbon (OC) on land. Upon mobilization, this OC is either returned to the atmosphere as carbon dioxide (CO2) or transported and ultimately locked into (marine) sediments, where it will act as a long-term sink of atmospheric CO2. These fluxes of soil OC are, however, difficult to evaluate, mostly due to the lack of a soil-specific tracer. In this study, a suite of branched glycerol dialkyl glycerol tetraethers (brGDGTs), which are membrane lipids of soil bacteria, is tested as specific tracers for soil OC from source (soils under arable land, ley, grassland, and woodland) to sink (Loe Pool sediments) in a small catchment located in southwest England (i.e. Carminowe Creek draining into Loe Pool). The analysis of brGDGTs in catchment soils reveals that their distribution is not significantly different across different land use types (p>0.05) and thus does not allow land-use-specific soil contributions to Loe Pool sediments to be traced. Furthermore, the significantly higher contribution of 6-methyl brGDGT isomers in creek sediments (isomerization ratio (IR) = 0.48±0.10, mean ± standard deviation (SD); p<0.05) compared to that in catchment soils (IR = 0.28±0.11) indicates that the initial soil signal is substantially altered by brGDGT produced in situ. Similarly, the riverine brGDGT signal appears to be overwritten by lacustrine brGDGTs in the lake sedimentary record, indicated by remarkably lower methylation of branched tetraethers (MBT5ME′=0.46±0.02 in creek bed sediments and 0.38±0.01 in lake core sediments; p<0.05) and a higher degree of cyclization (DC = 0.23±0.02 in creek bed sediments and 0.32±0.08 in lake core sediments). Thus, in this small catchment, brGDGTs do not allow us to trace soil OC transport. Nevertheless, the downcore changes in the degree of cyclization and the abundance of isoprenoid GDGTs produced by methanogens in the Loe Pool sediment do reflect local environmental conditions over the past 100 years and have recorded the eutrophication history of the lake.


2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Alvyra Šlepetienė ◽  
Kazimiež Duchovski ◽  
Jonas Volungevičius

The aim of this study – to evaluate the status of organic carbon (OC) under different land uses of soils formed in alluvial deposits. The soil samples were collected from 0–10, 10–20 and 20–30 cm depths in three field replicates.Three land uses were investigated: arable land, grassland and forest. The experimental site is situated near Surviliškis, Kėdainiai District (55°26′08.37′′N, 24°02′27.75′′Y) in Central Lowland of Lithuania. A total of 27 soil samples, collected from 0–10, 10–20 and 20–30 cm depths in three field replicates, were analysed for OC. The samples were prepared for analysis by removing plant residues, grinding and sieving through a 0.25 mm sieve. For all land uses, the highest content of OC was found in the upper 0–10 cm soil layer of the soil, with the highest values found in the forest land use. Fast-growing deciduous trees are an effective means to increase the content of OC in alluvial soil, especially in the 0–10 cm layer. The distribution of OC in the soil layers depended on the land use. Grassland and forest land uses allow OC to be preserved throughout the 0–30 cm layer, with less OC differentiation than in arable land. This could be attributed to the specificities of organic matter accumulation and degradation in different land uses. Not only the amount of labile organic carbon (similar to total organic carbon) was highest (0.392 g kg–1) in forest soil in the 0–10 cm layer, it also had a higher relative share in the total organic carbon (2.9%) than in other land uses – arable land and grassland (2.3–2.4%).


2016 ◽  
Vol 13 (5) ◽  
pp. 1519-1536 ◽  
Author(s):  
Maria Stergiadi ◽  
Marcel van der Perk ◽  
Ton C. M. de Nijs ◽  
Marc F. P. Bierkens

Abstract. Climate change and land management practices are projected to significantly affect soil organic carbon (SOC) dynamics and dissolved organic carbon (DOC) leaching from soils. In this modelling study, we adopted the Century model to simulate past (1906–2012), present, and future (2013–2100) SOC and DOC levels for sandy and loamy soils typical of northwestern European conditions under three land use types (forest, grassland, and arable land) and several future scenarios addressing climate change and land management change. To our knowledge, this is the first time that the Century model has been applied to assess the effects of climate change and land management on DOC concentrations and leaching rates, which, in combination with SOC, play a major role in metal transport through soil. The simulated current SOC levels were generally in line with the observed values for the different kinds of soil and land use types. The climate change scenarios result in a decrease in both SOC and DOC for the agricultural systems, whereas for the forest systems, SOC is projected to slightly increase and DOC to decrease. An analysis of the sole effects of changes in temperature and changes in precipitation showed that, for SOC, the temperature effect predominates over the precipitation effect, whereas for DOC the precipitation effect is more prominent. A reduction in the application rates of fertilisers under the land management scenario leads to a decrease in the SOC stocks and the DOC leaching rates for the arable land systems, but it has a negligible effect on SOC and DOC levels for the grassland systems. Our study demonstrated the ability of the Century model to simulate climate change and agricultural management effects on SOC dynamics and DOC leaching, providing a robust tool for the assessment of carbon sequestration and the implications for contaminant transport in soils.


Sign in / Sign up

Export Citation Format

Share Document