scholarly journals Ciliate and mesozooplankton community response to increasing CO<sub>2</sub> levels in the Baltic Sea: insights from a large-scale mesocosm experiment

2017 ◽  
Vol 14 (2) ◽  
pp. 447-466 ◽  
Author(s):  
Silke Lischka ◽  
Lennart T. Bach ◽  
Kai-Georg Schulz ◽  
Ulf Riebesell

Abstract. Community approaches to investigating ocean acidification (OA) effects suggest a high tolerance of micro- and mesozooplankton to carbonate chemistry changes expected to occur within this century. Plankton communities in the coastal areas of the Baltic Sea frequently experience pH variations partly exceeding projections for the near future both on a diurnal and seasonal basis. We conducted a large-scale mesocosm CO2 enrichment experiment ( ∼  55 m3) enclosing the natural plankton community in Tvärminne–Storfjärden for 8 weeks during June–August 2012 and studied community and species–taxon response of ciliates and mesozooplankton to CO2 elevations expected for this century. In addition to the response to fCO2, we also considered temperature and chlorophyll a variations in our analyses. Shannon diversity of ciliates significantly decreased with fCO2 and temperature with a greater dominance of smaller species. The mixotrophic Myrionecta rubra seemed to indirectly and directly benefit from higher CO2 concentrations in the post-bloom phase through increased occurrence of picoeukaryotes (most likely Cryptophytes) and Dinophyta at higher CO2 levels. With respect to mesozooplankton, we did not detect significant effects for either total abundance or for Shannon diversity. The cladocera Bosmina sp. occurred at distinctly higher abundance for a short time period during the second half of the experiment in three of the CO2-enriched mesocosms except for the highest CO2 level. The ratio of Bosmina sp. with empty to embryo- or resting-egg-bearing brood chambers, however, was significantly affected by CO2, temperature, and chlorophyll a. An indirect CO2 effect via increased food availability (Cyanobacteria) stimulating Bosmina sp. reproduction cannot be ruled out. Although increased regenerated primary production diminishes trophic transfer in general, the presence of organisms able to graze on bacteria such as cladocerans may positively impact organic matter transfer to higher trophic levels. Thus, under increasing OA in cladoceran-dominated mesozooplankton communities, the importance of the microbial loop in the pelagic zone may be temporarily enhanced and carbon transfer to higher trophic levels may be stimulated.

2015 ◽  
Vol 12 (23) ◽  
pp. 20025-20070 ◽  
Author(s):  
S. Lischka ◽  
L.T. Bach ◽  
K.-G. Schulz ◽  
U. Riebesell

Abstract. Community approaches investigating ocean acidification (OA) effects suggest a high tolerance of micro- and mesozooplankton to carbonate chemistry changes expected to occur within this century. Plankton communities in the coastal areas of the Baltic Sea frequently experience pH variations partly exceeding projections for the near future both on a diurnal and seasonal basis, thus some level of tolerance/adaptation may be expected. We conducted a large-scale mesocosm CO2 enrichment experiment (~ 55 m3) enclosing the natural plankton community in Tvärminne/Storfjärden for eight weeks during June–August 2012 and studied community and species/taxon response of microzooplankton (ciliates) and mesozooplankton to CO2 elevations expected for this century. Besides the response to fCO2 and associate changes in carbonate chemistry speciation, we also considered temperature and chlorophyll a variations in our analyses. Shannon diversity of microzooplankton significantly decreased with fCO2 and temperature with a greater dominance of smaller species. Small sized ciliates (Myrionecta rubra, Balanion comatum, Strombidium cf. epidemum, Strobilidium sp.) showed significant relations with one or more of the factors. The phototrophic Myrionecta rubra seemed to directly benefit from higher CO2 concentrations and showed increased abundance in the pre-bloom phase. With respect to meszooplankton, we neither detected significant effects for total abundance nor for Shannon diversity. The cladocera Bosmina occurred at distinctly higher abundance (more than twice as high compared to the control mesocosms) for a short time period during the second half of the experiment in three of the CO2-enriched mesocosms except for the highest CO2 level. The ratio of Bosmina with empty to embryo/resting egg bearing brood chambers, however, was significantly affected by all three factors. An indirect CO2 effect via increased food availability stimulating Bosmina reproduction is suggested, but too low sampling frequency of this highly flexible organism probably entailed proving a significant relation with fCO2. Filter-feeding cladocerans effectively transfer microbial loop carbon to higher trophic levels. Thus, under increasing OA in cladoceran dominated mesozooplankton communities the importance of the microbial loop in the pelagic zone may be enhanced and carbon transfer to higher trophic levels stimulated.


PLoS ONE ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. e0227714 ◽  
Author(s):  
Sanna Majaneva ◽  
Emil Fridolfsson ◽  
Michele Casini ◽  
Catherine Legrand ◽  
Elin Lindehoff ◽  
...  

2016 ◽  
Vol 13 (15) ◽  
pp. 4595-4613 ◽  
Author(s):  
Alison L. Webb ◽  
Emma Leedham-Elvidge ◽  
Claire Hughes ◽  
Frances E. Hopkins ◽  
Gill Malin ◽  
...  

Abstract. The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on trace gas biogeochemistry, a large-scale mesocosm experiment was performed off Tvärminne Research Station, Finland, in summer 2012. During the second half of the experiment, dimethylsulfide (DMS) concentrations in the highest-fCO2 mesocosms (1075–1333 µatm) were 34 % lower than at ambient CO2 (350 µatm). However, the net production (as measured by concentration change) of seven halocarbons analysed was not significantly affected by even the highest CO2 levels after 5 weeks' exposure. Methyl iodide (CH3I) and diiodomethane (CH2I2) showed 15 and 57 % increases in mean mesocosm concentration (3.8 ± 0.6 increasing to 4.3 ± 0.4 pmol L−1 and 87.4 ± 14.9 increasing to 134.4 ± 24.1 pmol L−1 respectively) during Phase II of the experiment, which were unrelated to CO2 and corresponded to 30 % lower Chl a concentrations compared to Phase I. No other iodocarbons increased or showed a peak, with mean chloroiodomethane (CH2ClI) concentrations measured at 5.3 (±0.9) pmol L−1 and iodoethane (C2H5I) at 0.5 (±0.1) pmol L−1. Of the concentrations of bromoform (CHBr3; mean 88.1 ± 13.2 pmol L−1), dibromomethane (CH2Br2; mean 5.3 ± 0.8 pmol L−1), and dibromochloromethane (CHBr2Cl, mean 3.0 ± 0.5 pmol L−1), only CH2Br2 showed a decrease of 17 % between Phases I and II, with CHBr3 and CHBr2Cl showing similar mean concentrations in both phases. Outside the mesocosms, an upwelling event was responsible for bringing colder, high-CO2, low-pH water to the surface starting on day t16 of the experiment; this variable CO2 system with frequent upwelling events implies that the community of the Baltic Sea is acclimated to regular significant declines in pH caused by up to 800 µatm fCO2. After this upwelling, DMS concentrations declined, but halocarbon concentrations remained similar or increased compared to measurements prior to the change in conditions. Based on our findings, with future acidification of Baltic Sea waters, biogenic halocarbon emissions are likely to remain at similar values to today; however, emissions of biogenic sulfur could significantly decrease in this region.


2021 ◽  
Vol 288 (1949) ◽  
Author(s):  
Johan Östergren ◽  
Stefan Palm ◽  
John Gilbey ◽  
Göran Spong ◽  
Johan Dannewitz ◽  
...  

Intra-species genetic homogenization arising from anthropogenic impacts is a major threat to biodiversity. However, few taxa have sufficient historical material to systematically quantify long-term genetic changes. Using archival DNA collected over approximately 100 years, we assessed spatio-temporal genetic change in Atlantic salmon populations across the Baltic Sea, an area heavily impacted by hydropower exploitation and associated with large-scale mitigation stocking. Analysis was carried out by screening 82 SNPs in 1680 individuals from 13 Swedish rivers. We found an overall decrease in genetic divergence and diminished isolation by distance among populations, strongly indicating genetic homogenization over the past century. We further observed an increase in genetic diversity within populations consistent with increased gene flow. The temporal genetic change was lower in larger wild populations than in smaller wild and hatchery-reared ones, indicating that larger populations have been able to support a high number of native spawners in relation to immigrants. Our results demonstrate that stocking practices of salmon in the Baltic Sea have led to the homogenization of populations over the last century, potentially compromising their ability to adapt to environmental change. Stocking of reared fish is common worldwide, and our study is a cautionary example of the potentially long-term negative effects of such activities.


Ocean Science ◽  
2016 ◽  
Vol 12 (4) ◽  
pp. 1013-1032 ◽  
Author(s):  
Justyna Meler ◽  
Piotr Kowalczuk ◽  
Mirosława Ostrowska ◽  
Dariusz Ficek ◽  
Monika Zabłocka ◽  
...  

Abstract. This study presents three alternative models for estimating the absorption properties of chromophoric dissolved organic matter aCDOM(λ). For this analysis we used a database containing 556 absorption spectra measured in 2006–2009 in different regions of the Baltic Sea (open and coastal waters, the Gulf of Gdańsk and the Pomeranian Bay), at river mouths, in the Szczecin Lagoon and also in three lakes in Pomerania (Poland) – Obłęskie, Łebsko and Chotkowskie. The variability range of the chromophoric dissolved organic matter (CDOM) absorption coefficient at 400 nm, aCDOM(400), lay within 0.15–8.85 m−1. The variability in aCDOM(λ) was parameterized with respect to the variability over 3 orders of magnitude in the chlorophyll a concentration Chl a (0.7–119 mg m−3). The chlorophyll a concentration and aCDOM(400) were correlated, and a statistically significant, nonlinear empirical relationship between these parameters was derived (R2 =  0.83). On the basis of the covariance between these parameters, we derived two empirical mathematical models that enabled us to design the CDOM absorption coefficient dynamics in natural waters and reconstruct the complete CDOM absorption spectrum in the UV and visible spectral domains. The input variable in the first model was the chlorophyll a concentration, and in the second one it was aCDOM(400). Both models were fitted to a power function, and a second-order polynomial function was used as the exponent. Regression coefficients for these formulas were determined for wavelengths from 240 to 700 nm at 5 nm intervals. Both approximations reflected the real shape of the absorption spectra with a low level of uncertainty. Comparison of these approximations with other models of light absorption by CDOM demonstrated that our parameterizations were superior (bias from −1.45 to 62 %, RSME from 22 to 220 %) for estimating CDOM absorption in the optically complex waters of the Baltic Sea and Pomeranian lakes.


2020 ◽  
Vol 12 (21) ◽  
pp. 3661
Author(s):  
Toma Dabuleviciene ◽  
Diana Vaiciute ◽  
Igor E. Kozlov

Based on the analysis of multispectral satellite data, this work demonstrates the influence of coastal upwelling on the variability of chlorophyll-a (Chl-a) concentration in the south-eastern Baltic (SEB) Sea and in the Curonian Lagoon. The analysis of sea surface temperature (SST) data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua/Terra satellites, together with Chl-a maps from Medium Resolution Imaging Spectrometer (MERIS) onboard Envisat, shows a significant decrease of up to 40–50% in Chl-a concentration in the upwelling zone. This results from the offshore Ekman transport of more productive surface waters, which are replaced by cold and less-productive waters from deeper layers. Due to an active interaction between the Baltic Sea and the Curonian Lagoon which are connected through the Klaipeda Strait, coastal upwelling in the SEB also influences the hydrobiological conditions of the adjacent lagoon. During upwelling inflows, SST drops by approximately 2–8 °C, while Chl-a concentration becomes 2–4 times lower than in pre-upwelling conditions. The joint analysis of remotely sensed Chl-a and SST data reveals that the upwelling-driven reduction in Chl-a concentration leads to the temporary improvement of water quality in terms of Chl-a in the coastal zone and in the hyper-eutrophic Curonian Lagoon. This study demonstrates the benefits of multi-spectral satellite data for upscaling coastal processes and monitoring the environmental status of the Baltic Sea and its largest estuarine lagoon.


2020 ◽  
Author(s):  
Svenja Bierstedt ◽  
Eduardo Zorita ◽  
Birgit Hünicke

&lt;p&gt;The coastlines of the Baltic Sea and Indonesia are both relatively complex, so that the estimation of extreme sea levels caused by the atmospheric forcing becomes complex with conventional methods. Here, we explore whether Machine Learning methods can provide a model surrogate to compute more rapidly daily extremes in sea level from large-scale atmosphere-ocean fields. We investigate the connections between the atmospheric and ocean drivers of local extreme sea level in South East Asia and along the Baltic Sea based on statistical analysis by Random Forest Models, driven by large-scale meteorological predictors and daily extreme sea level measured by tide-gauge records over the last few decades.&lt;/p&gt;&lt;p&gt;First results show that in some Indonesian areas extremes are driven by large-scale climate fields; in other areas they are incoherently driven by local processes. An area where random forest predicted extremes show good correspondence to observed extremes is found to be the Malaysian coastline. For the Indonesian coasts, the Random Forest Algorithm was unable to predict extreme sea levels in line with observations. Along the Baltic Sea, in contrast, the Random Forest model is able to produce reasonable estimations of extreme sea levels based on the large-scale atmospheric fields. An analysis of the interrelations of extreme sea levels in the South Asia regions suggests that either the data quality may be compromised in some regions or that other forcing factors, distinct from the large-scale atmospheric fields, may also be involved.&lt;/p&gt;


2016 ◽  
Vol 73 (7) ◽  
pp. 1739-1749 ◽  
Author(s):  
Zeynep Pekcan-Hekim ◽  
Anna Gårdmark ◽  
Agnes M. L. Karlson ◽  
Pirkko Kauppila ◽  
Mikaela Bergenius ◽  
...  

Abstract Climate change, eutrophication, and fishing are main pressures associated with changes in the abiotic and biotic environment in several sub-basins of the Baltic Sea. Identifying the nature of such changes is of relative importance for fisheries and environmental management. The Bothnian Bay is the northernmost sub-basin in the Baltic Sea and the responses of the foodweb to long-term changes in combined pressures have not been investigated. In this study, we explore long-term changes in the Bothnian Bay foodweb, represented by key species across all trophic levels over the past 34 years, and identify potential environmental and anthropogenic drivers. The results indicate that salinity is the most important driver to explain changes in the composition of the offshore biota in the Bothnian Bay. These changes are probably driven by indirect effects of salinity rather than bottom-up effects. A decline in the herring spawning-stock biomass was most plausibly attributed to an increased competition for food due to a parallel increase in vendace, which uses the same food resources (zooplankton and zoobenthos) and may benefit from declining salinity due to its limnic origin. A strong increase in the abundance of grey seal and ringed seal populations was seen in the late 2000s but was not related to any of the pressure variables analysed. Temperature and nutrients were not identified as important drivers of changes in the overall biota. Our study explores correlative relationships between variables and identifies potential interactions in the foodweb to generate hypotheses for further studies.


Sign in / Sign up

Export Citation Format

Share Document