scholarly journals Development and evaluation of an ozone deposition scheme for coupling to a terrestrial biosphere model

2017 ◽  
Vol 14 (1) ◽  
pp. 45-71 ◽  
Author(s):  
Martina Franz ◽  
David Simpson ◽  
Almut Arneth ◽  
Sönke Zaehle

Abstract. Ozone (O3) is a toxic air pollutant that can damage plant leaves and substantially affect the plant's gross primary production (GPP) and health. Realistic estimates of the effects of tropospheric anthropogenic O3 on GPP are thus potentially important to assess the strength of the terrestrial biosphere as a carbon sink. To better understand the impact of ozone damage on the terrestrial carbon cycle, we developed a module to estimate O3 uptake and damage of plants for a state-of-the-art global terrestrial biosphere model called OCN. Our approach accounts for ozone damage by calculating (a) O3 transport from 45 m height to leaf level, (b) O3 flux into the leaf, and (c) ozone damage of photosynthesis as a function of the accumulated O3 uptake over the lifetime of a leaf. A comparison of modelled canopy conductance, GPP, and latent heat to FLUXNET data across European forest and grassland sites shows a general good performance of OCN including ozone damage. This comparison provides a good baseline on top of which ozone damage can be evaluated. In comparison to literature values, we demonstrate that the new model version produces realistic O3 surface resistances, O3 deposition velocities, and stomatal to total O3 flux ratios. A sensitivity study reveals that key metrics of the air-to-leaf O3 transport and O3 deposition, in particular the stomatal O3 uptake, are reasonably robust against uncertainty in the underlying parameterisation of the deposition scheme. Nevertheless, correctly estimating canopy conductance plays a pivotal role in the estimate of cumulative O3 uptake. We further find that accounting for stomatal and non-stomatal uptake processes substantially affects simulated plant O3 uptake and accumulation, because aerodynamic resistance and non-stomatal O3 destruction reduce the predicted leaf-level O3 concentrations. Ozone impacts on GPP and transpiration in a Europe-wide simulation indicate that tropospheric O3 impacts the regional carbon and water cycling less than expected from previous studies. This study presents a first step towards the integration of atmospheric chemistry and ecosystem dynamics modelling, which would allow for assessing the wider feedbacks between vegetation ozone uptake and tropospheric ozone burden.

2016 ◽  
Author(s):  
Martina Franz ◽  
David Simpson ◽  
Almut Arneth ◽  
Sönke Zaehle

Abstract. Ozone is a toxic air pollutant that can damage plant leaves and substantially affect the plant’s gross primary production (GPP) and health. Realistic estimates of the effects of tropospheric anthropogenic ozone on GPP are thus potentially important to assess the strength of the terrestrial biosphere as a carbon sink. To better understand the impact of ozone damage on the terrestrial carbon cycle, we developed a module to estimate ozone uptake and damage of plants for the state of the art global terrestrial biosphere model OCN. Our approach accounts for ozone damage by calculating (a) ozone transport from the free troposphere to leaf level, (b) ozone flux into the leaf, and (c) ozone damage of photosynthesis as a function of the accumulated ozone uptake over the life-time of a leaf. A comparison of modelled canopy conductance, GPP, and latent heat to FLUXNET data across European forest and grassland sites shows a general good performance of OCN. In comparison to literature values, we demonstrate that the new model version produces realistic stomatal flux ratios as well as ozone surface resistances and depo- sition velocities. A sensitivity study reveals that key metrics of the air-to-leaf ozone transport and ozone deposition, in particular the stomatal ozone update are reason- ably robust against uncertainty in the underlying parameterisation of the deposition scheme. Correctly estimating canopy conductance plays a pivotal role in the estimate of cumulative ozone uptake. When applied at the European scale, we find that the added complexity of the ozone uptake simulation substantially affects simulated ozone uptake and accumulation, be- cause aerodynamic resistance and non-stomatal ozone destruction reduce the predicted ozone concentrations outside the leaves. Ozone impacts on GPP and transpiration in a Europe-wide simulation indicate that tropospheric ozone impacts the regional carbon and water cycling less than expected from previous studies.


1997 ◽  
Vol 95 (2-3) ◽  
pp. 249-287 ◽  
Author(s):  
A.D. Friend ◽  
A.K. Stevens ◽  
R.G. Knox ◽  
M.G.R. Cannell

2014 ◽  
Vol 11 (7) ◽  
pp. 10737-10777
Author(s):  
D. Plake ◽  
M. Sörgel ◽  
P. Stella ◽  
A. Held ◽  
I. Trebs

Abstract. The detailed understanding of surface–atmosphere exchange of reactive trace gas species is a crucial precondition for reliable modeling of processes in atmospheric chemistry. Plant canopies significantly impact the atmospheric budget of trace gases. In the past, many studies focused on taller forest canopies or crops, where the bulk plant material is concentrated in the uppermost canopy layer. However, within grasslands, a land-cover class that globally covers vast terrestrial areas, the canopy structure is fundamentally different, as the main biomass is concentrated in the lowest canopy part. This has obvious implications for aerodynamic in-canopy transport, and consequently also impacts on global budgets of key species in atmospheric chemistry such as nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3). This study presents for the first time a~comprehensive data set of directly measured in-canopy transport times and aerodynamic resistances, chemical timescales, Damköhler numbers, trace gas and micrometeorological measurements for a natural grassland canopy (canopy height = 0.6 m). Special attention is paid to the impact of contrasting meteorological and air chemical conditions on in-canopy transport and chemical flux divergence. Our results show that the grassland canopy is decoupled throughout the day. In the lower canopy, the measured transport times are fastest during nighttime, which is due to convection during nighttime and stable stratification during daytime in this layer. The inverse was found in the layers above. During periods of low wind speed and high NOx (NO+NO2) levels, the effect of canopy decoupling on trace gas transport was found especially distinct. The aerodynamic resistance in the lower canopy (0.04–0.2 m) was around 1000 s m−1, thus as high as values from literature representing the lowest meter of an Amazonian rain forest canopy. The aerodynamic resistance representing the bulk canopy was found to be more than 3–4 times higher as in forests. Calculated Damköhler numbers (ratio of transport and chemical timescales) suggested a strong flux divergence for the NO-NO2-O3 triad within the canopy during daytime. At that time, the timescale of NO2 plant uptake ranged from 90 to 160 s and was the fastest relevant timescale, i.e. faster than the reaction of NO and O3. Thus, our results clearly reveal that grassland canopies of similar structure have a strong potential to retain soil emitted NO by uptake of NO2 by the plants. Furthermore, a photo-chemical O3 production above the canopy was observed, which resulted from a~surplus of NO2 from the NO-NO2-O3 photostationary state. The O3 production was one order of magnitude higher during high NOx than during low NOx periods and resulted in an O3 flux underestimation, which was observed for the first time.


2021 ◽  
Author(s):  
Tamara Emmerichs ◽  
Bruno Franco ◽  
Catherine Wespes ◽  
Vinod Kumar ◽  
Andrea Pozzer ◽  
...  

Abstract. Near-surface ozone is an harmful air pollutant, which is determined to a considerable extent by weather-controlled processes, and may be significantly impacted by water vapour forming complexes with peroxy radicals. The role of water in the reaction of HO2 radical with nitrogen oxides is known from the literature, and in current models the water complex is considered by assuming a linear dependence on water concentrations. In fact, recent experimental evidence has been published, showing the significant role of water on the kinetics of one of the most important reaction for ozone chemistry, namely NO2 + OH. Here, the available kinetic data for the HOx + NOx reactions have been included in the atmospheric chemistry model ECHAM5/MESSy (EMAC) to test its global significance. Among the modified kinetics, the newly added HNO3 channel from HO2 + NO, dominates, significantly reducing NO2. A major removal process of near-surface ozone is dry deposition accounting for 20 % of the total tropospheric ozone loss mostly occurring over vegetation. However, parameterizations for modelling dry deposition represent a major source of uncertainty for tropospheric ozone simulations. This potentially belongs to the reasons why global models, such as EMAC used here, overestimate ozone with respect to observations. In fact, the employed parameterization is hardly sensitive to local meteorological conditions (e.g., humidity) and lacks non-stomatal deposition. In this study, a dry deposition scheme including these features have been used in EMAC, affecting not only the deposition of ozone but of its precursors, resulting in lower chemical production of ozone. Additionally, we improved the emissions of isoprene and nitrous acid (HONO). Namely, for isoprene emissions we have accounted for the impact of drought stress which confers a higher model sensitivity to meteorology leading to reduced annual emissions down to 32 %. For HONO, we have implemented soil emissions, which depend on soil moisture and thus on precipitation. We estimate for the first time a global source strength of 7 Tg(N) a−1. Furthermore, the usage of a parameterization for the production of lightning NOx that depends on cloud top height contributes to a more realistic representation of NO2 columns over remote oceans with respect to the satellite measurements of the Ozone Monitoring Instrument (OMI). The combination of all the model modifications reduces the simulated global ozone burden by ≈ 20 % to 337 Tg, which is in better agreement with recent estimates. By comparing simulation results with measurements from the Infrared Atmospheric Sounding Interferometer (IASI) and the Tropospheric Ozone Assessment Report (TOAR) databases (of 2009) we demonstrate an overall reduction of the ozone bias by a factor of 2.


2021 ◽  
Author(s):  
Thierno Doumbia ◽  
Claire Granier ◽  
Nellie Elguindi ◽  
Idir Bouarar ◽  
Sabine Darras ◽  
...  

Abstract. In order to fight the spread of the global COVID-19 pandemic, most of the world countries have taken control measures such as lockdowns during a few weeks to a few months. These lockdowns had significant impacts on economic and personal activities in many countries. Several studies using satellite and surface observations have reported important changes in the spatial and temporal distributions of atmospheric pollutants and greenhouse gases. Global and regional chemistry-transport model studies are being performed in order to analyze the impact of these lockdowns on the distribution of atmospheric compounds. These modeling studies aim at evaluating the impact of the regional lockdowns at the global scale. In order to provide input for the global and regional model simulations, a dataset providing adjustment factors (AFs) that can easily be applied to global and regional emission inventories has been developed. This dataset provides, for the January–August 2020 period, gridded AFs at a 0.1 × 0.1 latitude/longitude degree resolution, on a daily or monthly basis for the transportation (road, air and ship traffic), power generation, industry and residential sectors. The quantification of AFs is based on activity data collected from different databases and previously published studies. A range of AFs is provided at each grid point for model sensitivity studies. The emission AFs developed in this study are applied to the CAMS global inventory (CAMS-GLOB-ANT_v4.2_R1.1), and the changes in emissions of the main pollutants are discussed for different regions of the world and the first six months of 2020. Maximum decreases in the emissions are found in February in Eastern China, with an average reduction of 20–30 % in NOx, NMVOCs and SO2 relative to the reference emissions. In the other regions, the maximum changes occur in April, with average reductions of 20–30 % for NOx, NMVOCs and CO in Europe and North America and larger decreases (30–50 %) in South America. In India and African regions, NOx and NMVOCs emissions are reduced by 15–30 %. For the others species, the maximum reductions are generally less than 15 %, except in South America, where large decreases in CO and BC are estimated. As discussed in the paper, reductions vary highly across regions and sectors, due to the differences in the duration of the lockdowns before partial or complete recovery. The dataset providing a range of AFs (average and average ± standard deviation) is called CONFORM (COvid adjustmeNt Factor fOR eMissions) (https://doi.org/10.25326/88). It is distributed by the Emissions of atmospheric Compounds and Compilation of Ancillary Data (ECCAD) database (https://eccad.aeris-data.fr/).


2012 ◽  
Vol 367 (1586) ◽  
pp. 222-235 ◽  
Author(s):  
David Medvigy ◽  
Paul R. Moorcroft

Terrestrial biosphere models are important tools for diagnosing both the current state of the terrestrial carbon cycle and forecasting terrestrial ecosystem responses to global change. While there are a number of ongoing assessments of the short-term predictive capabilities of terrestrial biosphere models using flux-tower measurements, to date there have been relatively few assessments of their ability to predict longer term, decadal-scale biomass dynamics. Here, we present the results of a regional-scale evaluation of the Ecosystem Demography version 2 (ED2)-structured terrestrial biosphere model, evaluating the model's predictions against forest inventory measurements for the northeast USA and Quebec from 1985 to 1995. Simulations were conducted using a default parametrization, which used parameter values from the literature, and a constrained model parametrization, which had been developed by constraining the model's predictions against 2 years of measurements from a single site, Harvard Forest (42.5° N, 72.1° W). The analysis shows that the constrained model parametrization offered marked improvements over the default model formulation, capturing large-scale variation in patterns of biomass dynamics despite marked differences in climate forcing, land-use history and species-composition across the region. These results imply that data-constrained parametrizations of structured biosphere models such as ED2 can be successfully used for regional-scale ecosystem prediction and forecasting. We also assess the model's ability to capture sub-grid scale heterogeneity in the dynamics of biomass growth and mortality of different sizes and types of trees, and then discuss the implications of these analyses for further reducing the remaining biases in the model's predictions.


2015 ◽  
Vol 12 (4) ◽  
pp. 945-959 ◽  
Author(s):  
D. Plake ◽  
M. Sörgel ◽  
P. Stella ◽  
A. Held ◽  
I. Trebs

Abstract. The detailed understanding of surface–atmosphere exchange fluxes of reactive trace gases is a crucial precondition for reliable modelling of processes in atmospheric chemistry. Plant canopies significantly impact the atmospheric budget of trace gases. In the past, many studies focused on taller forest canopies or crops, where the bulk plant material is concentrated in the uppermost canopy layer. However, within grasslands, a land-cover class that globally covers vast terrestrial areas, the canopy structure is fundamentally different, as the main biomass is concentrated in the lowest part of the canopy. This has obvious implications for aerodynamic in-canopy transport, and consequently also impacts on global budgets of key species in atmospheric chemistry such as nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3). This study presents for the first time a comprehensive data set of directly measured in-canopy transport times and aerodynamic resistances, chemical timescales, Damköhler numbers, trace gas and micrometeorological measurements for a natural grassland canopy (canopy height = 0.6 m). Special attention is paid to the impact of contrasting meteorological and air chemical conditions on in-canopy transport and chemical flux divergence. Our results show that the grassland canopy is decoupled throughout the day. In the lowermost canopy layer, the measured transport times are fastest during nighttime, which is due to convection during nighttime and a stable stratification during daytime in this layer. The inverse was found in the layers above. During periods of low wind speed and high NOx (NO+NO2) levels, the effect of canopy decoupling on trace gas transport was found to be especially distinct. The aerodynamic resistance in the lowermost canopy layer (0.04–0.2 m) was around 1000 s m−1, which is as high as values determined previously for the lowest metre of an Amazonian rain forest canopy. The aerodynamic resistance representing the bulk canopy was found to be more than 3–4 times higher than in forests. Calculated Damköhler numbers (ratio of transport and chemical timescales) suggest a strong flux divergence for the NO–NO2–O3 triad within the canopy during daytime. During that time, the timescale of NO2 uptake by plants ranged from 90 to 160 s and was the fastest relevant timescale, i.e. faster than the reaction of NO and O3. Thus, our results reveal that grassland canopies of similar structure exhibit a strong potential to retain soil-emitted NO due to oxidation and subsequent uptake of NO2 by plants. Furthermore, photo-chemical O3 production was observed above the canopy, which was attributed to a deviation from the NO–NO2–O3 photostationary state by a surplus of NO2 due to oxidation of NO, by e.g. peroxy radicals. The O3 production was one order of magnitude higher during high NOx than during low NOx periods and resulted in an underestimation of the O3 deposition flux measured with the EC method.


2019 ◽  
Vol 12 (3) ◽  
pp. 1209-1225 ◽  
Author(s):  
Christoph A. Keller ◽  
Mat J. Evans

Abstract. Atmospheric chemistry models are a central tool to study the impact of chemical constituents on the environment, vegetation and human health. These models are numerically intense, and previous attempts to reduce the numerical cost of chemistry solvers have not delivered transformative change. We show here the potential of a machine learning (in this case random forest regression) replacement for the gas-phase chemistry in atmospheric chemistry transport models. Our training data consist of 1 month (July 2013) of output of chemical conditions together with the model physical state, produced from the GEOS-Chem chemistry model v10. From this data set we train random forest regression models to predict the concentration of each transported species after the integrator, based on the physical and chemical conditions before the integrator. The choice of prediction type has a strong impact on the skill of the regression model. We find best results from predicting the change in concentration for long-lived species and the absolute concentration for short-lived species. We also find improvements from a simple implementation of chemical families (NOx = NO + NO2). We then implement the trained random forest predictors back into GEOS-Chem to replace the numerical integrator. The machine-learning-driven GEOS-Chem model compares well to the standard simulation. For ozone (O3), errors from using the random forests (compared to the reference simulation) grow slowly and after 5 days the normalized mean bias (NMB), root mean square error (RMSE) and R2 are 4.2 %, 35 % and 0.9, respectively; after 30 days the errors increase to 13 %, 67 % and 0.75, respectively. The biases become largest in remote areas such as the tropical Pacific where errors in the chemistry can accumulate with little balancing influence from emissions or deposition. Over polluted regions the model error is less than 10 % and has significant fidelity in following the time series of the full model. Modelled NOx shows similar features, with the most significant errors occurring in remote locations far from recent emissions. For other species such as inorganic bromine species and short-lived nitrogen species, errors become large, with NMB, RMSE and R2 reaching >2100 % >400 % and <0.1, respectively. This proof-of-concept implementation takes 1.8 times more time than the direct integration of the differential equations, but optimization and software engineering should allow substantial increases in speed. We discuss potential improvements in the implementation, some of its advantages from both a software and hardware perspective, its limitations, and its applicability to operational air quality activities.


2020 ◽  
Vol 9 (8) ◽  
pp. 2351
Author(s):  
Łukasz Kuźma ◽  
Krzysztof Struniawski ◽  
Szymon Pogorzelski ◽  
Hanna Bachórzewska-Gajewska ◽  
Sławomir Dobrzycki

(1) Introduction: air pollution is considered to be one of the main risk factors for public health. According to the European Environment Agency (EEA), air pollution contributes to the premature deaths of approximately 500,000 citizens of the European Union (EU), including almost 5000 inhabitants of Poland every year. (2) Purpose: to assess the gender differences in the impact of air pollution on the mortality in the population of the city of Bialystok—the capital of the Green Lungs of Poland. (3) Materials and Methods: based on the data from the Central Statistical Office, the number—and causes of death—of Białystok residents in the period 2008–2017 were analyzed. The study utilized the data recorded by the Provincial Inspectorate for Environmental Protection station and the Institute of Meteorology and Water Management during the analysis period. Time series regression with Poisson distribution was used in statistical analysis. (4) Results: A total of 34,005 deaths had been recorded, in which women accounted for 47.5%. The proportion of cardiovascular-related deaths was 48% (n = 16,370). An increase of SO2 concentration by 1-µg/m3 (relative risk (RR) 1.07, 95% confidence interval (CI) 1.02–1.12; p = 0.005) and a 10 °C decrease of temperature (RR 1.03, 95% CI 1.01–1.05; p = 0.005) were related to an increase in the number of daily deaths. No gender differences in the impact of air pollution on mortality were observed. In the analysis of the subgroup of cardiovascular deaths, the main pollutant that was found to have an effect on daily mortality was particulate matter with a diameter of 2.5 μm or less (PM2.5); the RR for 10-µg/m3 increase of PM2.5 was 1.07 (95% CI 1.02–1.12; p = 0.01), and this effect was noted only in the male population. (5) Conclusions: air quality and atmospheric conditions had an impact on the mortality of Bialystok residents. The main air pollutant that influenced the mortality rate was SO2, and there were no gender differences in the impact of this pollutant. In the male population, an increased exposure to PM2.5 concentration was associated with significantly higher cardiovascular mortality. These findings suggest that improving air quality, in particular, even with lower SO2 levels than currently allowed by the World Health Organization (WHO) guidelines, may benefit public health. Further studies on this topic are needed, but our results bring questions whether the recommendations concerning acceptable concentrations of air pollutants should be stricter, or is there a safe concentration of SO2 in the air at all.


2015 ◽  
Vol 15 (13) ◽  
pp. 7413-7427 ◽  
Author(s):  
G. Wohlfahrt ◽  
C. Amelynck ◽  
C. Ammann ◽  
A. Arneth ◽  
I. Bamberger ◽  
...  

Abstract. Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates, reflecting uncertainties in the approaches used to model and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land–atmosphere methanol exchange. Our study shows that the controls of plant growth on production, and thus the methanol emission magnitude, as well as stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; however, they are neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow for full advantage to be taken of the rich information content of micrometeorological flux measurements.


Sign in / Sign up

Export Citation Format

Share Document