scholarly journals Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard)

2018 ◽  
Vol 15 (6) ◽  
pp. 1879-1894 ◽  
Author(s):  
Petr Kotas ◽  
Hana Šantrůčková ◽  
Josef Elster ◽  
Eva Kaštovská

Abstract. The unique and fragile High Arctic ecosystems are vulnerable to global climate warming. The elucidation of factors driving microbial distribution and activity in arctic soils is essential for a comprehensive understanding of ecosystem functioning and its response to environmental change. The goals of this study were to investigate microbial biomass and activity, microbial community structure (MCS), and their environmental controls in soils along three elevational transects in the coastal mountains of Billefjorden, central Svalbard. Soils from four different altitudes (25, 275, 525 and 765 m above sea level) were analyzed for a suite of characteristics including temperature regimes, organic matter content, base cation availability, moisture, pH, potential respiration, and microbial biomass and community structure using phospholipid fatty acids (PLFAs). We observed significant spatial heterogeneity of edaphic properties among transects, resulting in transect-specific effects of altitude on most soil parameters. We did not observe any clear elevation pattern in microbial biomass, and microbial activity revealed contrasting elevational patterns between transects. We found relatively large horizontal variability in MCS (i.e., between sites of corresponding elevation in different transects), mainly due to differences in the composition of bacterial PLFAs, but also a systematic altitudinal shift in MCS related to different habitat preferences of fungi and bacteria, which resulted in high fungi-to-bacteria ratios at the most elevated sites. The biological soil crusts on these most elevated, unvegetated sites can host microbial assemblages of a size and activity comparable to those of the arctic tundra ecosystem. The key environmental factors determining horizontal and vertical changes in soil microbial properties were soil pH, organic carbon content, soil moisture and Mg2+ availability.

2017 ◽  
Author(s):  
Petr Kotas ◽  
Hana Šantrůčková ◽  
Josef Elster ◽  
Eva Kaštovská

Abstract. The unique and fragile High Arctic ecosystems are vulnerable to proceeding global climate warming. Elucidation of factors driving microbial distribution and activity in Arctic soils is essential for comprehensive understanding of the ecosystem functioning and its response to environmental change. The goals of this study were to investigate the microbial biomass, activity, microbial community structure (MCS) and its abiotic controls in soils along three elevational gradients in coastal mountains of Billefjorden, Central Svalbard. Soils from four different altitudes (25, 275, 525, and 765 m above sea level) were analysed for a suite of characteristics including temperature regimes, organic matter content, base cation availability, moisture, pH, basal respiration, and microbial biomass and community structure using phospholipid fatty acids (PLFA). We observed significant altitudinal zonation of most edaphic characteristics reflected by soil microbial properties. The microbial biomass and activity normalized per unit of organic carbon significantly increased with elevation. The two dominant microbial groups, fungi and bacteria, had different habitat preferences, resulting in high fungi to bacteria (F / B) ratios at the most elevated sites. The changes in MCS were mainly governed by the bedrock chemistry, soil pH, organic carbon content and soil moisture. While the direct impact of summer soil temperature regimes on soil microbes was likely negligible, it´s influence on plant distribution along the gradients have strong implications for edaphic conditions and consequently also for soil microbes. Our results highlight the need to consider unvegetated high elevation areas as hotspots of microbial activity and important habitats within the High Arctic ecosystem.


2021 ◽  
Author(s):  
Ruud Rijkers ◽  
Johannes Rousk ◽  
Rien Aerts ◽  
James Taylor Weedon

<p>Soil temperatures are rising in the Arctic and will likely increase soil microbial activity. The magnitude of subsequent carbon effluxes is difficult to predict but is critical for evaluating the strength of the soil carbon-climate feedback as climate change intensifies. Soil respiration in the Arctic has a relatively high sensitivity to temperature increases. This is hypothesized to be a consequence of physiological adaptation of soil microbial communities to low temperatures. A variety of experimental and gradient studies have suggested that the growth-temperature relationship of bacterial communities will adapt to soil warming.  It remains an open question whether this is driven by changes in community structure. In order to test this hypothesis, we collected 8 soils from the sub- to High Arctic and exposed them to a 0-30 ⁰C temperature gradient. We determined the temperature relationships and community composition of the resulting bacterial communities. To account for substrate depletion we sampled both after 100 days, as well as after a standardized amount of respiration. Temperature relationships were computed by fitting a square root model to leucine incorporation rates measured from 0-40 ⁰C. We will show the relationship between legacy effects of the soil thermal regime and the degree of temperature adaption and discuss whether the soil bacterial community structure is likely to influence soil respiration in Arctic soils under future climate conditions.</p>


2016 ◽  
Vol 62 (6) ◽  
pp. 485-491 ◽  
Author(s):  
Samiran Banerjee ◽  
Nabla Kennedy ◽  
Alan E. Richardson ◽  
Keith N. Egger ◽  
Steven D. Siciliano

Archaea are ubiquitous and highly abundant in Arctic soils. Because of their oligotrophic nature, archaea play an important role in biogeochemical processes in nutrient-limited Arctic soils. With the existing knowledge of high archaeal abundance and functional potential in Arctic soils, this study employed terminal restriction fragment length polymorphism (t-RFLP) profiling and geostatistical analysis to explore spatial dependency and edaphic determinants of the overall archaeal (ARC) and ammonia-oxidizing archaeal (AOA) communities in a high Arctic polar oasis soil. ARC communities were spatially dependent at the 2–5 m scale (P < 0.05), whereas AOA communities were dependent at the ∼1 m scale (P < 0.0001). Soil moisture, pH, and total carbon content were key edaphic factors driving both the ARC and AOA community structure. However, AOA evenness had simultaneous correlations with dissolved organic nitrogen and mineral nitrogen, indicating a possible niche differentiation for AOA in which dry mineral and wet organic soil microsites support different AOA genotypes. Richness, evenness, and diversity indices of both ARC and AOA communities showed high spatial dependency along the landscape and resembled scaling of edaphic factors. The spatial link between archaeal community structure and soil resources found in this study has implications for predictive understanding of archaea-driven processes in polar oases.


2009 ◽  
Vol 6 (4) ◽  
pp. 6749-6780 ◽  
Author(s):  
R. Guicharnaud ◽  
O. Arnalds ◽  
G. I. Paton

Abstract. Temperature change is acknowledged to have a significance effect on soil biological processes and the corresponding sequestration of carbon and the cycling of key nutrients. Soils at high latitudes are likely to be particularly impacted by increases in temperature. In this study, the response of a range of soil microbial parameters (respiration, nutrient availability, microbial biomass carbon, arylphosphatase and dehydrogenase activity) to temperature changes was measured in sub-arctic soils collected from across Iceland. Sample sites reflected two soil temperature regimes (cryic and frigid) and two land uses (pasture and arable). The soils were sampled from the field frozen, equilibrated at −20°C and then incubated for two weeks at −10°C, −2°C, +2°C and +10°C. Respiration and enzymatic activity were temperature dependent. Microbial biomass carbon and nitrogen mineralisation did not change with temperature. The main factor controlling soil respiration at −10°C was the concentration of dissolved organic carbon. At −10°C, dissolved organic carbon accounted for 88% of the fraction of labile carbon which was significantly greater than that recorded at +10°C when dissolved organic carbon accounted for as low as 42% of the labile carbon fraction. Heterotrophic microbial activity is governed by both substrate availability and the temperature and this has been described by the Q10 factor. Elevated temperatures in the short term may have little effect on the size of the microbial biomass but will have significant impacts on the release of carbon through respiration. These results demonstrate that gradual changes in temperature across large areas at higher latitudes will have considerable impacts in relation to global soil carbon dynamics.


2011 ◽  
Vol 5 (3) ◽  
pp. 773-790 ◽  
Author(s):  
R. Dankers ◽  
E. J. Burke ◽  
J. Price

Abstract. Land surface models (LSMs) need to be able to simulate realistically the dynamics of permafrost and frozen ground. In this paper we evaluate the performance of the LSM JULES (Joint UK Land Environment Simulator), the stand-alone version of the land surface scheme used in Hadley Centre climate models, in simulating the large-scale distribution of surface permafrost. In particular we look at how well the model is able to simulate the seasonal thaw depth or active layer thickness (ALT). We performed a number of experiments driven by observation-based climate datasets. Visually there is a very good agreement between areas with permafrost in JULES and known permafrost distribution in the Northern Hemisphere, and the model captures 97% of the area where the spatial coverage of the permafrost is at least 50%. However, the model overestimates the total extent as it also simulates permafrost where it occurs sporadically or only in isolated patches. Consistent with this we find a cold bias in the simulated soil temperatures, especially in winter. However, when compared with observations on end-of-season thaw depth from around the Arctic, the ALT in JULES is generally too deep. Additional runs at three sites in Alaska demonstrate how uncertainties in the precipitation input affect the simulation of soil temperatures by affecting the thickness of the snowpack and therefore the thermal insulation in winter. In addition, changes in soil moisture content influence the thermodynamics of soil layers close to freezing. We also present results from three experiments in which the standard model setup was modified to improve physical realism of the simulations in permafrost regions. Extending the soil column to a depth of 60 m and adjusting the soil parameters for organic content had relatively little effect on the simulation of permafrost and ALT. A higher vertical resolution improves the simulation of ALT, although a considerable bias still remains. Future model development in JULES should focus on a dynamic coupling of soil organic carbon content and soil thermal and hydraulic properties, as well as allowing for sub-grid variability in soil types.


2011 ◽  
Vol 71-78 ◽  
pp. 2992-2998
Author(s):  
Ling Ma ◽  
Sheng Nan Liu ◽  
Xin Hua Ding ◽  
Wei Ma

In this paper, the spatial distributions and seasonal dynamics of soil microbes and microbial biomass were investigated in a typical reed marsh in Zhalong natural wetlands.We wanted to explore the main factors that impacted their spatio-temporal patterns. The results showed that: Bacteria were dominant, followed by actinomyces and fungi were at least in the soil microbes community. The seasonal dynamics of soil microbial biomass carbon and nitrogen were more regularly, and their change patterns were significantly as "W" types. The response of soil microbial biomass in Bottom (10-30cm) to time was slower than the surface, and it fluctuated tinily in every months. The correlation analysis shows that the soil nutrient and soil microbial activity had close relationship. Soil microbial biomass carbon and nitrogen were all significantly positively correlated to quantities of fungus, organic carbon content and Alkali-hytrolyzabel N content(P<0.01), but negative extremely significantly correlated with pH (P<0.01).


Sign in / Sign up

Export Citation Format

Share Document