scholarly journals Assessing approaches to determine the effect of ocean acidification on bacterial processes

2016 ◽  
Author(s):  
Tim J. Burrell ◽  
Elizabeth W. Maas ◽  
Paul Teesdale-Spittle ◽  
Cliff S. Law

Abstract. Bacterial extracellular enzymes play a significant role in the degradation of labile organic matter and nutrient availability in the open ocean. Although bacterial production and extracellular enzymes may be affected by ocean acidification, few studies to date have considered the methodology used to measure enzyme activity and bacterial processes. This study investigated the potential artefacts in determining the response of bacterial extracellular glucosidase and aminopeptidase to ocean acidification, and the relative effects of three different acidification techniques. Tests confirmed that the fluorescence of the artificial fluorophores was affected by pH, and that addition of MCA fluorescent substrate alters seawater pH. In experiments testing different acidification methods, bubbling with CO2 gas mixtures resulted in higher β-glucosidase activity relative to acidification by their introduction via gas-permeable silicon tubing, or by acid addition (HCl). In addition, bacterial numbers were 15–40 % higher with bubbling relative to seawater acidified with gas-permeable silicon tubing and HCl. Bubbling may lead to overestimation of carbohydrate degradation and bacterial abundance, and consequently incorrect interpretation of the impacts of ocean acidification on organic matter cycling.

2016 ◽  
Vol 13 (15) ◽  
pp. 4379-4388 ◽  
Author(s):  
Timothy J. Burrell ◽  
Elizabeth W. Maas ◽  
Paul Teesdale-Spittle ◽  
Cliff S. Law

Abstract. Bacterial extracellular enzymes play a significant role in the degradation of labile organic matter and nutrient availability in the open ocean. Although bacterial production and extracellular enzymes may be affected by ocean acidification, few studies to date have considered the methodology used to measure enzyme activity and bacterial processes. This study investigated the potential artefacts in determining the response of bacterial growth and extracellular glucosidase and aminopeptidase activity to ocean acidification as well as the relative effects of three different acidification techniques. Tests confirmed that the observed effect of pH on fluorescence of artificial fluorophores, and the influence of the MCA fluorescent substrate on seawater sample pH, were both overcome by the use of Tris buffer. In experiments testing different acidification methods, bubbling with CO2 gas mixtures resulted in higher β-glucosidase activity and 15–40 % higher bacterial abundance, relative to acidification via gas-permeable silicon tubing and acid addition (HCl). Bubbling may stimulate carbohydrate degradation and bacterial growth, leading to the incorrect interpretation of the impacts of ocean acidification on organic matter cycling.


2015 ◽  
Vol 12 (8) ◽  
pp. 5841-5870 ◽  
Author(s):  
T. J. Burrell ◽  
E. W. Maas ◽  
P. Teesdale-Spittle ◽  
C. S. Law

Abstract. To fully understand the impact of ocean acidification on biogeochemical cycles, the response of bacterial extracellular enzymes needs to be considered as they play a central role in the degradation and distribution of labile organic matter. This study investigates the methodology, and potential artefacts involved in determining the response of bacterial extracellular glucosidase and protease to ocean acidification. The effect of pH on artificial fluorophores and substrates was examined, as well as the impact of three different acidification methods. The results indicate that pH has a significant effect on the fluorescence of the artificial fluorophore 4-methylumbeliferone for glucosidase activity, and 7-amino-4-methylcoumarin for protease activity, while artificial aminopeptidase substrate alters the pH of seawater, confirming previous observations. Before use in ocean acidification research these enzyme assay components must be buffered in order to stabilise sample pH. Reduction of coastal seawater pH to 7.8 was shown to increase β-glucosidase activity rapidly (0.5 h), while no significant response was detected for leucine aminopeptidase, highlighting the need for short-term direct effects of pH on enzyme activities. Bubbling with CO2 gas resulted in higher β-glucosidase activity when compared to acidification using gas-permeable silicon tubing and acidification with HCl. Although bubbling showed variable effects between two experiments conducted at different times of the year. In addition, bacterial cell numbers were 15–40% higher with bubbling relative to seawater acidified with gas-permeable silicon tubing and HCl. Artefacts associated with bubbling may lead to the overestimation of extracellular enzyme activities, and interpretation of the impacts of ocean acidification on organic matter cycling.


2018 ◽  
Vol 15 (1) ◽  
pp. 209-231 ◽  
Author(s):  
Stacy Deppeler ◽  
Katherina Petrou ◽  
Kai G. Schulz ◽  
Karen Westwood ◽  
Imojen Pearce ◽  
...  

Abstract. High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm) to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a) and particulate organic matter (POM) in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels  ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C), causing significant reductions in gross primary production (GPP14C), Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs) and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments  ≥ 953 µatm (days 3–5), yet gross bacterial production (GBP14C) remained unchanged and cell-specific bacterial productivity (csBP14C) was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON) combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative effects on the Antarctic food web and the biological pump, resulting in negative feedbacks on anthropogenic CO2 uptake. Increases in bacterial abundance under high CO2 conditions may also increase the efficiency of the microbial loop, resulting in increased organic matter remineralisation and further declines in carbon sequestration.


2017 ◽  
Author(s):  
Stacy Deppeler ◽  
Katherina Petrou ◽  
Kai G. Schulz ◽  
Karen Westwood ◽  
Imojen Pearce ◽  
...  

Abstract. High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 μatm) to 1641 μatm in six 650 l minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a decline in primary productivity, bacterial productivity, and the accumulation of Chlorophyll a (Chl a) and particulate organic matter (POM) in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 μatm. CO2 levels ≥ 1140 μatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csPP14C), causing significant reductions in gross primary production (GPP14C), Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs) and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments ≥ 953 μatm (days 3–5), yet gross bacterial production (GBP14C) remained unchanged and cell-specific bacterial productivity (csBP14C) was reduced. Towards the end of experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON) combined with improved efficiency of carbon uptake. Such changes in phytoplankton community production could have negative effects on the Antarctic food web and the biological pump, resulting in negative feedbacks on anthropogenic CO2 uptake. Increases in bacterial abundance under high CO2 conditions may also increase the efficiency of the microbial loop, resulting in increased organic matter remineralisation and further declines in carbon sequestration.


2009 ◽  
Vol 6 (6) ◽  
pp. 11377-11400 ◽  
Author(s):  
J. Piontek ◽  
M. Lunau ◽  
N. Händel ◽  
C. Borchard ◽  
M. Wurst ◽  
...  

Abstract. With the accumulation of anthropogenic carbon dioxide (CO2), a proceeding decline in seawater pH has been induced that is referred to as ocean acidification. The ocean's capacity for CO2 storage is strongly affected by biological processes, whose feedback potential is difficult to evaluate. The main source of CO2 in the ocean is the decomposition and subsequent respiration of organic molecules by heterotrophic bacteria. However, very little is known about potential effects of ocean acidification on bacterial degradation activity. This study reveals that the degradation of polysaccharides, a major component of marine organic matter, by bacterial extracellular enzymes was significantly accelerated during experimental simulation of ocean acidification. Results were obtained from pH perturbation experiments, where rates of extracellular α- and β-glucosidase were measured and the loss of neutral and acidic sugars from phytoplankton-derived polysaccharides was determined. Our study suggests that a faster bacterial turnover of polysaccharides at lowered ocean pH has the potential to affect the cycling of organic carbon in the future ocean by weakening the biological carbon pump and increasing the respiratory production of CO2.


2016 ◽  
Vol 13 (9) ◽  
pp. 2815-2821 ◽  
Author(s):  
Federico Baltar ◽  
Catherine Legrand ◽  
Jarone Pinhassi

Abstract. Extracellular enzymatic activities (EEAs) are a crucial step in the degradation of organic matter. Dissolved (cell-free) extracellular enzymes in seawater can make up a significant contribution of the bulk EEA. However, the factors controlling the proportion of dissolved EEA in the marine environment remain unknown. Here we studied the seasonal changes in the proportion of dissolved relative to total EEA (of alkaline phosphatase (APase), β-glucosidase (BGase), and leucine aminopeptidase (LAPase)), in the Baltic Sea for 18 months. The proportion of dissolved EEA ranged between 37 and 100, 0 and 100, and 34 and 100 % for APase, BGase, and LAPase, respectively. A consistent seasonal pattern in the proportion of dissolved EEA was found among all the studied enzymes, with values up to 100 % during winter and  <  40 % during summer. A significant negative relation was found between the proportion of dissolved EEA and temperature, indicating that temperature might be a critical factor controlling the proportion of dissolved relative to total EEA in marine environments. Our results suggest a strong decoupling of hydrolysis rates from microbial dynamics in cold waters. This implies that under cold conditions, cell-free enzymes can contribute to substrate availability at large distances from the producing cell, increasing the dissociation between the hydrolysis of organic compounds and the actual microbes producing the enzymes. This might also suggest a potential effect of global warming on the hydrolysis of organic matter via a reduction of the contribution of cell-free enzymes to the bulk hydrolytic activity.


2011 ◽  
Vol 77 (12) ◽  
pp. 4055-4065 ◽  
Author(s):  
Yuya Tada ◽  
Akito Taniguchi ◽  
Ippei Nagao ◽  
Takeshi Miki ◽  
Mitsuo Uematsu ◽  
...  

ABSTRACTGrowth and productivity of phytoplankton substantially change organic matter characteristics, which affect bacterial abundance, productivity, and community structure in aquatic ecosystems. We analyzed bacterial community structures and measured activities inside and outside phytoplankton blooms in the western North Pacific Ocean by using bromodeoxyuridine immunocytochemistry and fluorescencein situhybridization (BIC-FISH).Roseobacter/Rhodobacter, SAR11,Betaproteobacteria,Alteromonas, SAR86, andBacteroidetesresponded differently to changes in organic matter supply.Roseobacter/Rhodobacterbacteria remained widespread, active, and proliferating despite large fluctuations in organic matter and chlorophylla(Chl-a) concentrations. The relative contribution ofBacteroidetesto total bacterial production was consistently high. Furthermore, we documented the unexpectedly large contribution ofAlteromonasto total bacterial production in the bloom. Bacterial abundance, productivity, and growth potential (the proportion of growing cells in a population) were significantly correlated with Chl-aand particulate organic carbon concentrations. Canonical correspondence analysis showed that organic matter supply was critical for determining bacterial community structures. The growth potential of each bacterial group as a function of Chl-aconcentration showed a bell-shaped distribution, indicating an optimal organic matter concentration to promote growth. The growth ofAlteromonasandBetaproteobacteriawas especially strongly correlated with organic matter supply. These data elucidate the distinctive ecological role of major bacterial taxa in organic matter cycling during open ocean phytoplankton blooms.


2010 ◽  
Vol 7 (11) ◽  
pp. 3473-3489 ◽  
Author(s):  
J. Holtvoeth ◽  
H. Vogel ◽  
B. Wagner ◽  
G. A. Wolff

Abstract. Organic matter preserved in Lake Ohrid sediments originates from aquatic and terrestrial sources. Its variable composition reflects climate-controlled changes in the lake basin's hydrology and related organic matter export, i.e. changes in primary productivity, terrestrial plant matter input and soil erosion. Here, we present first results from lipid biomarker investigations of Lake Ohrid sediments from two near-shore settings: site Lz1120 near the southern shore, with low-lying lands nearby and probably influenced by river discharge, and site Co1202 which is close to the steep eastern slopes. Variable proportions of terrestrial n-alkanoic acids and n-alkanols as well as compositional changes of ω-hydroxy acids document differences in soil organic matter supply between the sites and during different climate stages (glacial, Holocene, 8.2 ka cooling event). Changes in the vegetation cover are suggested by changes in the dominant chain length of terrestrial n-alkanols. Effective microbial degradation of labile organic matter and in situ contribution of organic matter derived from the microbes themselves are both evident in the sediments. We found evidence for anoxic conditions within the photic zone by detecting epicholestanol and tetrahymanol from sulphur-oxidising phototrophic bacteria and bacterivorous ciliates and for the influence of a settled human community from the occurrence of coprostanol, a biomarker for human and animal faeces (pigs, sheep, goats), in an early Holocene sample. This study illustrates the potential of lipid biomarkers for future environmental reconstructions using one of Europe's oldest continental climate archives, Lake Ohrid.


2014 ◽  
Vol 11 (11) ◽  
pp. 2977-2990 ◽  
Author(s):  
E. Bayraktarov ◽  
C. Wild

Abstract. Sediments are fundamental for the function of oligotrophic coral reef ecosystems because they are major places for organic matter recycling. The Tayrona National Natural Park (TNNP, Colombian Caribbean) is located between the population center Santa Marta (>455 000 inhabitants) in the southwest and several river mouths in the east. Here, coral reef sediments experience pronounced changes in environmental conditions due to seasonal coastal upwelling, but knowledge of relevant spatiotemporal effects on organic matter supply to the sediments and recycling processes is not available. Therefore, sediment traps were deployed monthly over 14 months complemented by assessment of sedimentary properties (e.g., porosity, grain size, content of particulate organic matter and pigments) and sedimentary O2 demand (SOD) at water-current-exposed and sheltered sites along distance gradients (12–20 km) to Santa Marta and the eastern river mouths (17–27 km). Findings revealed that seasonal upwelling delivered strong (75–79% of annual supply) pulses of labile organic matter mainly composed of fresh phytoplankton detritus (C : N ratio 6–8) to the seafloor. Sedimentary chlorophyll a contents and SOD increased significantly with decreasing distance to the eastern rivers, but only during upwelling. This suggests sedimentary organic matter supply controlled by nutrient-enriched upwelling waters and riverine runoff rather than by the countercurrent-located city of Santa Marta. Organic matter pulses led to significantly higher SOD (more than 30%) at the water-current-sheltered sites as compared to the exposed sites, ensuing a rapid recycling of the supplied labile organic matter in the permeable silicate reef sands.


Sign in / Sign up

Export Citation Format

Share Document