scholarly journals Reproducible determination of dissolved organic matter photosensitivity

2020 ◽  
Author(s):  
Alec W. Armstrong ◽  
Leanne Powers ◽  
Michael Gonsior

Abstract. Dissolved organic matter (DOM) connects aquatic and terrestrial ecosystems, plays an important role in C and N cycles, and supports aquatic food webs. Understanding DOM chemical composition and reactivity is key to predict its ecological role, but characterization is difficult as natural DOM is comprised of a large but unknown number of distinct molecules. Photochemistry is one of the environmental processes responsible for changing the molecular composition of DOM and DOM composition also defines its susceptibility to photochemical alteration. Reliably differentiating the photosensitivity of DOM from different sources can improve our knowledge of how DOM composition is shaped by photochemical alteration and aid research into photochemistry's role in various DOM transformation processes. Here we describe an approach to measure and compare DOM photosensitivity consistently based on the kinetics of changes in DOM fluorescence during 20h photodegradation experiments. We assess the influence of experimental conditions that might affect reproducibility, discuss our modelling approach, offer guidelines for adopting our methods, and illustrate possible applications for ecological inferences. Central to our approach is the use of a reference material, precise control of conditions, leveraging actinometry to estimate photon dose, and frequent (every 20 minutes) fluorescence and absorbance measurements during exposure to artificial sunlight. We compared DOM from freshwater wetlands, a stream, an estuary, and Sargassum sp. leachate and observed differences in sensitivity that could help identify or explain differences in their composition. Finally, we offer an example applying our approach to compare DOM photosensitivity in two adjacent wetlands as seasonal hydrologic changes alter their DOM sources. Our approach may improve reproducibility when compared to other methods and captures time-resolved changes in optical properties that may have been missed previously.

2021 ◽  
Vol 18 (11) ◽  
pp. 3367-3390
Author(s):  
Alec W. Armstrong ◽  
Leanne Powers ◽  
Michael Gonsior

Abstract. Dissolved organic matter (DOM) connects aquatic and terrestrial ecosystems, plays an important role in carbon (C) and nitrogen (N) cycles, and supports aquatic food webs. Understanding DOM chemical composition and reactivity is key for predicting its ecological role, but characterization is difficult as natural DOM is comprised of a large but unknown number of distinct molecules. Photochemistry is one of the environmental processes responsible for changing the molecular composition of DOM, and DOM composition also defines its susceptibility to photochemical alteration. Reliably differentiating the photosensitivity of DOM from different sources can improve our knowledge of how DOM composition is shaped by photochemical alteration and aid research into photochemistry's role in various DOM transformation processes. Here we describe an approach for measuring and comparing DOM photosensitivity consistently, based on the kinetics of changes in DOM fluorescence during 20 h photodegradation experiments. We identify several methodological choices that affect photosensitivity measurements and offer guidelines for adopting our methods, including the use of reference material, precise control of conditions affecting photon dose, leveraging actinometry to estimate photon dose instead of expressing results as a function of exposure time, and frequent (every 20 min) fluorescence and absorbance measurements during exposure to artificial sunlight. We then show that our approach can generate photosensitivity metrics across several sources of DOM, including freshwater wetlands, a stream, an estuary, and Sargassum sp. leachate and observed differences in these metrics that may help identify or explain differences in their composition. Finally, we offer an example of applying our approach to compare DOM photosensitivity in two adjacent freshwater wetlands as seasonal hydrologic changes alter their DOM sources.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brice K. Grunert ◽  
Maria Tzortziou ◽  
Patrick Neale ◽  
Alana Menendez ◽  
Peter Hernes

AbstractThe Arctic is experiencing rapid warming, resulting in fundamental shifts in hydrologic connectivity and carbon cycling. Dissolved organic matter (DOM) is a significant component of the Arctic and global carbon cycle, and significant perturbations to DOM cycling are expected with Arctic warming. The impact of photochemical and microbial degradation, and their interactive effects, on DOM composition and remineralization have been documented in Arctic soils and rivers. However, the role of microbes, sunlight and their interactions on Arctic DOM alteration and remineralization in the coastal ocean has not been considered, particularly during the spring freshet when DOM loads are high, photoexposure can be quite limited and residence time within river networks is low. Here, we collected DOM samples along a salinity gradient in the Yukon River delta, plume and coastal ocean during peak river discharge immediately after spring freshet and explored the role of UV exposure, microbial transformations and interactive effects on DOM quantity and composition. Our results show: (1) photochemical alteration of DOM significantly shifts processing pathways of terrestrial DOM, including increasing relative humification of DOM by microbes by > 10%; (2) microbes produce humic-like material that is not optically distinguishable from terrestrial humics; and (3) size-fractionation of the microbial community indicates a size-dependent role for DOM remineralization and humification of DOM observed through modeled PARAFAC components of fluorescent DOM, either through direct or community effects. Field observations indicate apparent conservative mixing along the salinity gradient; however, changing photochemical and microbial alteration of DOM with increasing salinity indicate changing DOM composition likely due to microbial activity. Finally, our findings show potential for rapid transformation of DOM in the coastal ocean from photochemical and microbial alteration, with microbes responsible for the majority of dissolved organic matter remineralization.


2021 ◽  
Vol 8 ◽  
Author(s):  
Rachel P. Martineac ◽  
Alexey V. Vorobev ◽  
Mary Ann Moran ◽  
Patricia M. Medeiros

Uncovering which biogeochemical processes have a critical role controlling dissolved organic matter (DOM) compositional changes in complex estuarine environments remains a challenge. In this context, the aim of this study is to characterize the dominant patterns of variability modifying the DOM composition in an estuary off the Southeastern U.S. We collected water samples during three seasons (July and October 2014 and April 2015) at both high and low tides and conducted short- (1 day) and long-term (60 days) dark incubations. Samples were analyzed for bulk DOC concentration, and optical (CDOM) and molecular (FT-ICR MS) compositions and bacterial cells were collected for metatranscriptomics. Results show that the dominant pattern of variability in DOM composition occurs at seasonal scales, likely associated with the seasonality of river discharge. After seasonal variations, long-term biodegradation was found to be comparatively more important in the fall, while tidal variability was the second most important factor correlated to DOM composition in spring, when the freshwater content in the estuary was high. Over shorter time scales, however, the influence of microbial processing was small. Microbial data revealed a similar pattern, with variability in gene expression occurring primarily at the seasonal scale and tidal influence being of secondary importance. Our analyses suggest that future changes in the seasonal delivery of freshwater to this system have the potential to significantly impact DOM composition. Changes in residence time may also be important, helping control the relative contribution of tides and long-term biodegradation to DOM compositional changes in the estuary.


2021 ◽  
Author(s):  
Simon Benk ◽  
Robert Lehmann ◽  
Kai Uwe Totsche ◽  
Gerd Gleixner

<p>With surface systems changing rapidly on a global scale, it is important to understand how this will affect groundwater resources and ecosystems in the subsurface. The molecular composition of dissolved organic matter (DOM) integrates essential information on metabolic functioning and could therefore reveal changes of groundwater ecosystems in high detail. Here, we evaluate a 6-year time series of ultrahigh-resolution DOM composition analysis of groundwater from a hillslope well transect within the Hainich Critical Zone Exploratory, Germany. We predict ecosystem functionality by assigning molecular sum formulas to metabolic pathways via the KEGG database. Our data support hydrogeological characterizations of a compartmentalized fractured multi-storey aquifer system and reveal distinct metabolic functions that largely depend on the compartment’s relative surface-connectivity or isolation. We show that seasonal fluctuation of groundwater levels, coinciding with cross-stratal exchange can substantially impact the local inventory of functional metabolites in DOM. Furthermore, we find that extreme conditions of groundwater recharge following pronounced groundwater lowstand cause strong alterations of the functional metabolome in DOM even in aquifer compartments, which usually show minimal variation in DOM composition. Our findings suggest that bedrock groundwater ecosystems might be functionally vulnerable to hydrogeological extremes.</p>


Author(s):  
Songyan Li ◽  
Meng Li ◽  
Guoxi Wang ◽  
Xiaolei Sun ◽  
Beidou Xi ◽  
...  

Abstract Background Exploration of composition and chemical characteristics of soil dissolved organic matter (DOM) is significant to understand its biogeochemical role in terrestrial ecosystems. A total of 43 cropped and 16 natural soils (0–20 cm) under four soil types (cinnamon, chernozem, red and paddy soils) across China were collected to investigate the spectral characteristics of DOM using UV–Vis and 3D-EEM spectroscopy. Results The chernozem soils exhibited the highest aromaticity and humification degree among the four soil types. Ranges of biological index (BIX, 0.53–1.17) and fluorescence index (FI, 1.55–2.10) were found in the investigated DOM, showing joint contribution from allochthonous and autochthonous sources. Higher BIX and FI in the DOM of the paddy and red soils indicated a greater reliance on autochthonous sources for these two soil types. The cropped soils showed no significant differences in chemical characteristics and sources from the natural soils for the cinnamon, chernozem and red soils. UVA (16.2–47.9%) and UVC fulvic-like substances (15.4–40.5%) were the prevailing DOM components, which were highest in the chernozem soils. Additionally, the cropped soils had a higher proportion of humic-like substances than the natural soils in the DOM. Conclusions Both soil type and land-use strongly affected the chemical characteristics of soil DOM, but only soil type had an impact on the DOM composition for the collected soils. These findings may contribute to the prediction of the biochemical behavior of soil DOM under different soil types and land-uses in terrestrial ecosystems.


2003 ◽  
Vol 37 (11) ◽  
pp. 2599-2606 ◽  
Author(s):  
X.Q. Lu ◽  
N. Maie ◽  
J.V. Hanna ◽  
D.L. Childers ◽  
R. Jaffé

Eos ◽  
2019 ◽  
Vol 100 ◽  
Author(s):  
Elizabeth Thompson

Dissolved organic matter supports aquatic food webs and holds as much carbon as the atmosphere. A new study tracks which sources and processes play the biggest role in coastal systems.


2016 ◽  
Author(s):  
Lisa Thieme ◽  
Daniel Graeber ◽  
Martin Kaupenjohann ◽  
Jan Siemens

Abstract. Freezing can affect concentrations and spectroscopic properties of dissolved organic matter (DOM) in water samples. Nevertheless, water samples are regularly frozen for sample preservation. In this study we tested the effect of different freezing methods (standard freezing at −18 °C and fast-freezing with liquid nitrogen) on DOM concentrations measured as organic carbon (DOC) concentrations and on spectroscopic properties of DOM from different terrestrial ecosystems (forest and grassland). Fresh and differently frozen throughfall, stemflow and soil solution samples were analyzed for DOC concentrations, UV-vis absorption and fluorescence excitation-emission matrices combined with parallel factor analysis (PARAFAC). Fast-freezing with liquid nitrogen prevented a significant decrease of DOC concentrations observed after freezing at −18 °C. Nonetheless, the share of PARAFAC components 1 (EXmax < 250 nm (340 nm), EMmax: 480 nm) and 2 (EXmax: 335 nm, EMmax: 408 nm) to total fluorescence and the humification index (HIX) decreased after both freezing treatments, while the shares of component 3 (EXmax: < 250 nm (305 nm), EMmax: 438 nm) as well as SUVA254 increased. The contribution of PARAFAC component 4 (EXmax: 280 nm, EMmax: 328 nm) to total fluorescence was not affected by freezing. We recommend fast-freezing with liquid nitrogen for preservation of bulk DOC concentrations of samples from terrestrial sources, whereas immediate measuring is preferable to preserve spectroscopic properties of DOM.


Sign in / Sign up

Export Citation Format

Share Document