scholarly journals Evaluation of satellite based indices for gross primary production estimates in a sparse savanna in the Sudan

2009 ◽  
Vol 6 (1) ◽  
pp. 129-138 ◽  
Author(s):  
M. Sjöström ◽  
J. Ardö ◽  
L. Eklundh ◽  
B. A. El-Tahir ◽  
H. A. M. El-Khidir ◽  
...  

Abstract. One of the more frequently applied methods for integrating controls on primary production through satellite data is the Light Use Efficiency (LUE) approach. Satellite indices such as the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and the Shortwave Infrared Water Stress Index (SIWSI) have previously shown promise as predictors of primary production in several different environments. In this study, we evaluate NDVI, EVI and SIWSI derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensor against in-situ measurements from central Sudan in order to asses their applicability in LUE-based primary production modeling within a water limited environment. Results show a strong correlation between vegetation indices and gross primary production (GPP), demonstrating the significance of vegetation indices for deriving information on primary production with relatively high accuracy at similar areas. Evaluation of SIWSI however, reveal that the fraction of vegetation apparently is to low for the index to provide accurate information on canopy water content, indicating that the use of SIWSI as a predictor of water stress in satellite data-driven primary production modeling in similar semi-arid ecosystems is limited.

2008 ◽  
Vol 5 (4) ◽  
pp. 2985-3011 ◽  
Author(s):  
M. Sjöström ◽  
J. Ardö ◽  
L. Eklundh ◽  
B. A. El-Tahir ◽  
H. A. M. El-Khidir ◽  
...  

Abstract. One of the more frequently applied methods for integrating controls on primary production through satellite data is the Light Use Efficiency (LUE) approach. Satellite indices such as the Enhanced Vegetation Index (EVI) and the Shortwave Infrared Water Stress Index (SIWSI) have previously shown promise as predictors of primary production in several different environments. In this study, we evaluate EVI and SIWSI derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensor against in-situ measurements from central Sudan in order to asses their applicability in LUE-based primary production modelling within a water limited environment. Results show a strong correlation between EVI against gross primary production (GPP), demonstrating the significance of EVI for deriving information on primary production with relatively high accuracy at similar areas. Evaluation of SIWSI however, reveal that the fraction of vegetation apparently is to low for the index to provide accurate information on canopy water content, indicating that the use of SIWSI as a predictor of water stress in satellite data-driven primary production modelling in similar semi-arid ecosystems is limited.


2017 ◽  
Vol 14 (5) ◽  
pp. 1333-1348 ◽  
Author(s):  
Torbern Tagesson ◽  
Jonas Ardö ◽  
Bernard Cappelaere ◽  
Laurent Kergoat ◽  
Abdulhakim Abdi ◽  
...  

Abstract. It has been shown that vegetation growth in semi-arid regions is important to the global terrestrial CO2 sink, which indicates the strong need for improved understanding and spatially explicit estimates of CO2 uptake (gross primary production; GPP) in semi-arid ecosystems. This study has three aims: (1) to evaluate the MOD17A2H GPP (collection 6) product against GPP based on eddy covariance (EC) for six sites across the Sahel; (2) to characterize relationships between spatial and temporal variability in EC-based photosynthetic capacity (Fopt) and quantum efficiency (α) and vegetation indices based on earth observation (EO) (normalized difference vegetation index (NDVI), renormalized difference vegetation index (RDVI), enhanced vegetation index (EVI) and shortwave infrared water stress index (SIWSI)); and (3) to study the applicability of EO upscaled Fopt and α for GPP modelling purposes. MOD17A2H GPP (collection 6) drastically underestimated GPP, most likely because maximum light use efficiency is set too low for semi-arid ecosystems in the MODIS algorithm. Intra-annual dynamics in Fopt were closely related to SIWSI being sensitive to equivalent water thickness, whereas α was closely related to RDVI being affected by chlorophyll abundance. Spatial and inter-annual dynamics in Fopt and α were closely coupled to NDVI and RDVI, respectively. Modelled GPP based on Fopt and α upscaled using EO-based indices reproduced in situ GPP well for all except a cropped site that was strongly impacted by anthropogenic land use. Upscaled GPP for the Sahel 2001–2014 was 736 ± 39 g C m−2 yr−1. This study indicates the strong applicability of EO as a tool for spatially explicit estimates of GPP, Fopt and α; incorporating EO-based Fopt and α in dynamic global vegetation models could improve estimates of vegetation production and simulations of ecosystem processes and hydro-biochemical cycles.


Author(s):  
Pedro J. Gómez-Giráldez ◽  
Elisabet Carpintero ◽  
Mario Ramos ◽  
Cristina Aguilar ◽  
María P. González-Dugo

Abstract. Dehesa ecosystem consists of widely-spaced oak trees combined with crops, pasture and Mediterranean shrubs. It is located in the southwest of the Iberian Peninsula, where water scarcity is recurrent, severely affecting the multiple productions and services of the ecosystem. Upscaling in situ Gross Primary Production (GPP) estimates in these areas is challenging for regional and global studies, given the significant spatial variability of plant functional types and the vegetation stresses usually present. The estimation of GPP is often addressed using light use efficiency models (LUE-models). Under soil water deficit conditions, biomass production is reduced below its potential rate. This work investigates the effect of different parameterizations to account for water stress on GPP estimates and their agreement with observations. Ground measurements of GPP are obtained using an Eddy Covariance (EC) system installed over an experimental site located in Córdoba, Spain. GPP is estimated with a LUE-model in the footprint of the EC tower using several approaches: a fixed value taken from previous literature; a fixed value modified by daily weather conditions; and both formulations modified by an additional coefficient to explicitly consider the vegetation water stress. The preliminary results obtained during two hydrological years (2015/2016 and 2016/2017) are compared, focusing on specific wet and dry periods.


2020 ◽  
Vol 12 (14) ◽  
pp. 2186
Author(s):  
Fengfei Xin ◽  
Xiangming Xiao ◽  
Osvaldo M.R. Cabral ◽  
Paul M. White ◽  
Haiqiang Guo ◽  
...  

Sugarcane (complex hybrids of Saccharum spp., C4 plant) croplands provide cane stalk feedstock for sugar and biofuel (ethanol) production. It is critical for us to analyze the phenology and gross primary production (GPP) of sugarcane croplands, which would help us to better understand and monitor the sugarcane growing condition and the carbon cycle. In this study, we combined the data from two sugarcane EC flux tower sites in Brazil and the USA, images from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, and data-driven models to study the phenology and GPP of sugarcane croplands. The seasonal dynamics of climate, vegetation indices from MODIS images, and GPP from two sugarcane flux tower sites (GPPEC) reveal the temporal consistency in sugarcane phenology (crop calendar: green-up dates and harvesting dates) as estimated by the vegetation indices and GPPEC data. The Land Surface Water Index (LSWI) is shown to be useful to delineate the phenology of sugarcane croplands. The relationship between the sugarcane GPPEC and the Enhanced Vegetation Index (EVI) is stronger than the relationship between the GPPEC and the Normalized Difference Vegetation Index (NDVI). We ran the Vegetation Photosynthesis Model (VPM), which uses the light use efficiency (LUE) concept and is driven by climate data and MODIS images, to estimate the daily GPP at the two sugarcane sites (GPPVPM). The seasonal dynamics of the GPPVPM and GPPEC at the two sites agreed reasonably well with each other, which indicates that VPM is a powerful tool for estimating the GPP of sugarcane croplands in Brazil and the USA. This study clearly highlights the potential of combining eddy covariance technology, satellite-based remote sensing technology, and data-driven models for better understanding and monitoring the phenology and GPP of sugarcane croplands under different climate and management practices.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Garrett Michael Shuldes

The Canopy Near-infrared Observing Project (CaNOP) will utilize a multispectral pushbroom imager in a 3U CubeSat to carry out spectrally resolved imaging of global forest regions with spectral resolution sufficient to reproduce the LandSat 8 mission and calculate vegetation indices. The project provides an educational experience for undergraduate students to design, build, test, and operate a 3U CubeSat. Using concepts from fields such as physics, engineering, and computer science, students were to link the electrical, mechanical, and software components of the satellite together to create a flawless flow of information and power across the entirety of the satellite and its corresponding ground stations to which the images of the global forest regions will be transferred and analyzed. Two vegetation indices; the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) will be used in combination with the Net Primary Production (NPP) of any forest to produce the Gross Primary Production (GPP), which will then provide the information required to answer the argument that the CaNOP team’s hypothesis proposes: An old-growth forest will absorb more carbon than a newly grown secondary forest.


2020 ◽  
Vol 12 (9) ◽  
pp. 1405 ◽  
Author(s):  
César Hinojo-Hinojo ◽  
Michael L. Goulden

Remotely-sensed Vegetation Indices (VIs) are often tightly correlated with terrestrial ecosystem CO2 uptake (Gross Primary Production or GPP). These correlations have been exploited to infer GPP at local to global scales and over half-hour to decadal periods, though the underlying mechanisms remain incompletely understood. We used satellite remote sensing and eddy covariance observations at 10 sites across a California climate gradient to explore the relationships between GPP, the Enhanced Vegetation Index (EVI), the Normalized Difference Vegetation Index (NDVI), and the Near InfraRed Vegetation (NIRv) index. EVI and NIRv were linearly correlated with GPP across both space and time, whereas the relationship between NDVI and GPP was less general. We explored these interactions using radiative transfer and GPP models forced with in-situ plant trait and soil reflectance observations. GPP ultimately reflects the product of Leaf Area Index (LAI) and leaf level CO2 uptake (Aleaf); a VI that is sensitive mainly to LAI will lack generality across ecosystems that differ in Aleaf. EVI and NIRv showed a strong, multiplicative sensitivity to LAI and Leaf Mass per Area (LMA). LMA was correlated with Aleaf, and EVI and NIRv consequently mimic GPP’s multiplicative sensitivity to LAI and Aleaf, as mediated by LMA. NDVI was most sensitive to LAI, and was relatively insensitive to leaf properties over realistic conditions; NDVI lacked EVI and NIRv’s sensitivity to both LAI and Aleaf. These findings carry implications for understanding the limitations of current VIs for predicting GPP, and also for devising strategies to improve predictions of GPP.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Fan Liu ◽  
Chuankuan Wang ◽  
Xingchang Wang

Abstract Background Vegetation indices (VIs) by remote sensing are widely used as simple proxies of the gross primary production (GPP) of vegetation, but their performances in capturing the inter-annual variation (IAV) in GPP remain uncertain. Methods We evaluated the performances of various VIs in tracking the IAV in GPP estimated by eddy covariance in a temperate deciduous forest of Northeast China. The VIs assessed included the normalized difference vegetation index (NDVI), the enhanced vegetation index (EVI), and the near-infrared reflectance of vegetation (NIRv) obtained from tower-radiometers (broadband) and the Moderate Resolution Imaging Spectroradiometer (MODIS), respectively. Results We found that 25%–35% amplitude of the broadband EVI tracked the start of growing season derived by GPP (R2: 0.56–0.60, bias < 4 d), while 45% (or 50%) amplitudes of broadband (or MODIS) NDVI represented the end of growing season estimated by GPP (R2: 0.58–0.67, bias < 3 d). However, all the VIs failed to characterize the summer peaks of GPP. The growing-season integrals but not averaged values of the broadband NDVI, MODIS NIRv and EVI were robust surrogates of the IAV in GPP (R2: 0.40–0.67). Conclusion These findings illustrate that specific VIs are effective only to capture the GPP phenology but not the GPP peak, while the integral VIs have the potential to mirror the IAV in GPP.


Agriculture ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 116 ◽  
Author(s):  
Alessandro Matese ◽  
Salvatore Di Gennaro

High spatial ground resolution and highly flexible and timely control due to reduced planning time are the strengths of unmanned aerial vehicle (UAV) platforms for remote sensing applications. These characteristics make them ideal especially in the medium–small agricultural systems typical of many Italian viticulture areas of excellence. UAV can be equipped with a wide range of sensors useful for several applications. Numerous assessments have been made using several imaging sensors with different flight times. This paper describes the implementation of a multisensor UAV system capable of flying with three sensors simultaneously to perform different monitoring options. The intra-vineyard variability was assessed in terms of characterization of the state of vines vigor using a multispectral camera, leaf temperature with a thermal camera and an innovative approach of missing plants analysis with a high spatial resolution RGB camera. The normalized difference vegetation index (NDVI) values detected in different vigor blocks were compared with shoot weights, obtaining a good regression (R2 = 0.69). The crop water stress index (CWSI) map, produced after canopy pure pixel filtering, highlighted the homogeneous water stress areas. The performance index developed from RGB images shows that the method identified 80% of total missing plants. The applicability of a UAV platform to use RGB, multispectral and thermal sensors was tested for specific purposes in precision viticulture and was demonstrated to be a valuable tool for fast multipurpose monitoring in a vineyard.


2010 ◽  
Vol 7 (1) ◽  
pp. 1101-1129 ◽  
Author(s):  
T. Tagesson ◽  
M. Mastepanov ◽  
M. P. Tamstorf ◽  
L. Eklundh ◽  
P. Schubert ◽  
...  

Abstract. Arctic wetlands play a key role in the terrestrial carbon cycle. Recent studies have shown a greening trend and indicated an increase in CO2 uptake in boreal and sub- to low-arctic areas. Our aim was to combine satellite-based normalized difference vegetation index (NDVI) with ground-based flux measurements of CO2 to investigate a possible greening trend and potential changes in gross primary production (GPP) between 1992 and 2008 in a high arctic fen area. The study took place in Rylekaerene in the Zackenberg Research Area (74°28' N 20°34' W), located in the National park of North Eastern Greenland. We estimated the light use efficiency (ε) for the dominant vegetation types from field measured fractions of photosynthetic active radiation (FAPAR) and ground-based flux measurements of GPP. Measured FAPAR were correlated to satellite-based NDVI. The FAPAR-NDVI relationship in combination with ε was applied to satellite data to model GPP 1992–2008. The model was evaluated against field measured GPP. The model was a useful tool for up-scaling GPP and all basic requirements for the model were well met, e.g., FAPAR was well correlated to NDVI and modeled GPP was well correlated to field measurements. The studied high arctic fen area has experienced a strong increase in GPP between 1992 and 2008. The area has during this period also experienced a substantial increase in local air temperature. Consequently, the observed greening trend is most likely due to ongoing climatic change possibly in combination with CO2 fertilization, due to increasing atmospheric concentrations of CO2.


Sign in / Sign up

Export Citation Format

Share Document